ESERCIZI

- La forza \vec{F}_1 agisce nella direzione Nord-Sud, rivolta verso Sud e ha un modulo di 30 N. Una seconda forza \vec{F}_2 è descritta dalla formula $\vec{F}_2 = -2.5 \times \vec{F}_1$.
 - Quali sono la direzione e il verso di \vec{F}_2 ?
 - Quanto vale il modulo di \vec{F}_2 ?

[75 N]

- Mario e Luigi spingono una grossa cassa esercitando ciascuna una forza parallela al pavimento, nello stesso verso. La forza risultante sulla cassa è 89 N; Mario spinge con la forza di 35 N.
 - Calcola l'intensità della forza sviluppata da Luigi.
 - ► Se Mario e Luigi spingessero in versi opposti, quanto varrebbe la risultante sulla cassa?

[54 N;19 N]

- La forza \vec{F}_1 ha direzione orizzontale, è diretta verso Est e ha modulo 35 N; la forza \vec{F}_2 , di modulo 50 N, è inclinata di 45° rispetto all'orizzontale e punta in direzione Nord-Est.
 - ► Scegli una scala opportuna e disegna le due forze sul tuo quaderno.
 - Disegna la risultante con il metodo punta-
 - ▶ Determina il modulo della risultante.

[Circa 80 N]

- Considera le stesse forze dell'esercizio precedente.
 - ▶ Disegna di nuovo le due forze sul tuo quaderno con la stessa scala utilizzata prima.
 - ▶ Disegna il vettore differenza $\vec{F}_2 \vec{F}_1$.
 - ▶ Determina il modulo del vettore $\vec{F}_2 \vec{F}_1$.

[Circa 35 N

- Una cassa che pesa 1,30 kN viene spinta sul pavimento da una forza orizzontale. Quando il modulo della forza raggiunge i 2,0 × 10² N, la cassa si mette in moto.
 - ► Calcola il coefficiente di attrito statico tra il pavimento e la cassa.

[0,15]

- La forza necessaria per mettere in moto la cassa dell'esercizio 4, sulla quale è appoggiato uno zaino, risulta essere 2,2 × 10² N.
 - Qual è il peso dello zaino?

 $[1.7 \times 10^2 \text{ N}]$

- Le corde di sicurezza che si usano nell'arrampicata sportiva sono elastiche. In una palestra da arrampicata un *climber* è giunto in alto e si fa calare a terra. La massa dell'alpinista è 70,4 kg e la costante elastica della corda è 3,29 × 10³ N/m.
 - ► Calcola l'allungamento subito dalla corda mentre trattiene il *climber*.

[20,0 cm]

- Una molla con costante elastica pari a 80 N/m ha una lunghezza di 13,6 cm mentre su di essa è applicata una forza di 2,3 N.
 - Quanto è lunga la stessa molla nella sua posizione di riposo (cioè quando nessuna forza la deforma?)

[10,7 cm]

1