
RECUPERO

PARALLELOGRAMMI, RETTANGOLI ROMBI, QUADRATI

COMPLETA

Dimostra che, se un quadrilatero è un parallelogramma, allora i lati opposti sono congruenti.

Disegna la figura.

Ipotesi

$$ABCD$$
è un

Tesi
$$AD \cong \dots \in DC$$
.

Scrivi l'ipotesi e la tesi.

Dimostrazione

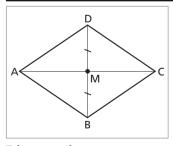
Uniamo A con ...:

$$D\widehat{C}A \cong \dots$$
 (DC //... tagliate dalla trasversale AC);
 $D\widehat{A}C \cong \dots$ (AD //... tagliate dalla trasversale AC).

Traccia la diagonale AC. Individua le coppie di angoli alterni interni.

I triangoli *ADC* e ... hanno:

Osserva gli elementi congruenti nei due triangoli ADC e ABC.


$$D\widehat{C}A \cong ...;$$

 $D\widehat{A}C \cong ...;$

AC

I triangoli sono per il ... criterio di congruenza. Applica uno dei criteri di congruenza. In particolare, $AB \cong \dots \in AD \cong \dots$ Individua gli elementi congruenti corrispondenti.

PROVA TU

Dimostra che nel rombo le diagonali sono perpendicolari tra di loro e bisettrici degli angoli.

Ipotesi ABCD è un Tesi 1. $AC \perp \dots$

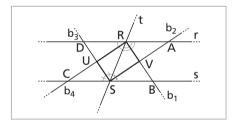
2. . . . e *DB* sono degli angoli.

Dimostrazione

Il rombo è un, pertanto le si intersecano nel loro punto medio, quindi

 $BM \cong \dots \in AM \cong \dots$

Il rombo ha i lati, pertanto ADC è un triangolo


Il segmento DM è mediana, cioè

quindi è anche altezza e bisettrice dell'angolo al vertice; pertanto $DM \perp ...$,

quindi $DB \perp ...$ e, inoltre, $A\widehat{D}B \cong ...$ Ragionando in modo analogo sul triangolo ADB si ha che AM è dell'angolo \widehat{A} , quindi $B\widehat{A}C \cong$

PROVA TU

Date due rette parallele r e s, la trasversale t le interseca nei punti R e S. Conduci le bisettrici degli angoli coniugati interni che si tagliano nei punti U e V e che incontrano le rette r e s nei punti A, B, C e D. Dimostra che il quadrilatero RUSV è un rettangolo.

Ipotesi 1. $r /\!\!/ ...;$ 2. ... trasversale; 3. b_1 bisettrice di $S\widehat{R}A;$ b_2 bisettrice di ...; b_3 di $C\widehat{S}R;$ b_4 bisettrice di

Tesi RUSV

Dimostrazione

Consideriamo gli angoli coniugati interni $A\hat{R}S$ e Per l'inverso del teorema delle rette parallele tagliate da una trasversale essi sono Gli angoli $V\hat{R}S$ e $R\hat{S}V$, essendo metà di angoli supplementari, sono pertanto Il triangolo RSV, avendo due angoli complementari, è in V. Analogamente si dimostra che il triangolo RSU è rettangolo in Consideriamo gli angoli alterni interni $A\hat{R}S$ e ...: essi sono congruenti per l'inverso del teorema delle rette tagliate Pertanto $V\hat{R}S\cong U\hat{S}R$ perché metà di angoli I triangoli RSV e URS sono per il criterio di congruenza dei triangoli, avendo RS in comune e un angolo congruente. Il quadrilatero RUSV è allora un parallelogramma, essendo formato da due triangoli In particolare è un avendo due retti.

- Sui lati di un quadrato *ABCD* costruisci i triangoli isosceli *DCE*, *ADF*, *BAG*, *CBH*, rettangoli rispettivamente in *C*, *D*, *A*, *B*. Dimostra che il quadrilatero *EFGH* è un quadrato.
- 5 Dimostra che se un parallelogramma ha le diagonali congruenti e perpendicolari, allora è un quadrato.
- Dato un parallelogramma ABCD di diagonali AC e BD, su AC traccia i punti E e F, in modo che $AE \cong CF$.

Dimostra che EBFD è un parallelogramma.

► Caso particolare: se ABCD è un rombo, di che natura è il parallelogramma EBFD?

- Disegna un triangolo rettangolo *ABC*, con base l'ipotenusa *AB*, e traccia i prolungamenti di *AB* da entrambe le parti. Esternamente al triangolo, costruisci sul cateto *AC* il quadrato *ACDE* e sul cateto *BC* il quadrato *BCLF*. Dai due vertici *E* e *F* traccia i segmenti *EK* e *FT* perpendicolari alla retta che contiene *AB*, e sia *CH* l'altezza relativa all'ipotenusa *AB*.
 - a) Di che tipo sono i triangoli CAH e KAE?
 - b) Sono congruenti?
 - c) Dimostra che i triangoli *CHB* e *BTF* sono congruenti. Dimostra inoltre che $AB \cong KE + FT$.
- Disegna un rettangolo e congiungi i punti medi dei lati. Quale quadrilatero ottieni? Disegna un rombo e congiungi i punti medi dei lati. Quale quadrilatero ottieni? Disegna un quadrato e congiungi i punti medi dei lati. Quale quadrilatero ottieni? Per ogni risposta dai un'adeguata spiegazione.