ELEMENTI DI MATEMATICA

1. Notazione esponenziale di un numero decimale

Un numero decimale viene espresso in *notazione esponenziale* quando è espresso ponendo in evidenza un'opportuna potenza di 10, cioè con una notazione del tipo:

 $a \cdot 10^n$, con *n* intero

La notazione esponenziale si ottiene spostando la virgola di un numero di posizioni pari a *n*, verso sinistra se *n* è positivo e verso destra se *n* è negativo.

La notazione esponenziale è molto comoda per scrivere e fare operazioni con numeri molto grandi o molto piccoli.

ESEMPIO

Esprimere in notazione esponenziale i numeri 120 000 e 0,000120:

• 120 000:

 $1,2 \cdot 10^5 \ o \ 12 \cdot 10^4 \ o \ 120 \cdot 10^3$

• 0,000120:

 $1.2 \cdot 10^{-4} \ o \ 12 \cdot 10^{-5} \ o \ 120 \cdot 10^{-6}$

NOTAZIONE SCIENTIFICA

La *notazione scientifica* consiste nell'esprimere un numero nella forma $p \cdot 10^n$ con $1 \le p \le 9$, seguito dalle eventuali cifre decimali, e n intero.

Con la notazione scientifica alle volte si sottintende la base 10, indicando solo l'esponente preceduto dalla lettera *E* (Esponente).

ESEMPIO

Esprimere in notazione scientifica il numero 11 000 000:

 $1,1 \cdot 10^7$ oppure 1,1E + 7.

2. Ordine di grandezza di un numero

È la potenza del dieci che differisce meno dal numero stesso; per esempio 11 000 000 ha come ordine di grandezza 10⁷.

3. Multipli e sottomultipli di numeri decimali

Nella TABELLA **A.1** sono riportati i simboli che corrispondono ai prefissi con cui si denotano i multipli e i sottomultipli utilizzati nel sistema metrico decimale (SI, *Sistema Internazionale di unità di misura*).

ESEMPIO

Esprimere con multipli o sottomultipli una frequenza di $5\,000\,000\,$ Hz, una capacità di $0,000001\,$ F e una tensione di $0,0003\,$ V.

Esprimiamo i numeri in notazione esponenziale: $f = 5 \cdot 10^6$ Hz, $C = 10^{-6}$ F, $V = 0.3 \cdot 10^{-3}$ V oppure $V = 300 \cdot 10^{-6}$ V.

Esprimiamo quindi i valori impiegando i multipli o i sottomultipli: f = 5 MHz, C = 1 μ F, V = 0.3 mV oppure V = 300 μ V.

TABELLA A.1 Simboli e prefissi utilizzati nel sistema metrico decimale.

Simbolo	Prefisso	Fattore (ordine di grandezza)	
Υ	Yotta	$(10^3)^8 = 10^{24}$	
Z	Zetta	$(10^3)^7 = 10^{21}$	
Е	Exa $(10^3)^6 = 10^{18}$		
Р	Peta $(10^3)^5 = 10^{15}$		
Т	Tera $(10^3)^4 = 10^{12}$		
G	Giga $(10^3)^3 = 10^9$		
М	Mega	$(10^3)^2 = 10^6$	
k	kilo 10 ³		
h	Etto (hecto)	10 ²	
da	deca	10	
d	deci	10 ⁻¹	
С	centi 10 ⁻²		
m	milli 10 ⁻³		
μ	micro	$(10^3)^{-2} = 10^{-6}$	
n	nano $(10^3)^{-3} = 10^{-9}$		
р	pico $(10^3)^{-4} = 10^{-12}$		
f	femto	$(10^3)^{-5} = 10^{-15}$	
a	atto	$(10^3)^{-6} = 10^{-18}$	
Z	zepto	$(10^3)^{-7} = 10^{-21}$	
У	yocto	$(10^3)^{-8} = 10^{-24}$	

4. Operazioni con le potenze

Nelle telecomunicazioni si ha comunemente a che fare con numeri molto piccoli o molto grandi per cui risulta spesso conveniente esprimere i valori in notazione esponenziale o in notazione scientifica e operare con le potenze in base 10, in modo da sfruttarne le proprietà matematiche, che sono riassunte nella TABELLA A.2.

Per esempio, il segnale che viene captato da un'antenna ricevente è debolissimo, dell'ordine dei milionesimi di Volt, mentre la frequenza del segnale TV che si riceve da un satellite è elevatissima, dell'ordine dei miliardi di Hertz. Quindi in questo ambito possiamo avere a che fare con valori di tensione dell'ordine di 0,000001 V o con frequenze dell'ordine di 10 000 000 000 Hz.

Risulta evidente la scomodità di operare con numeri espressi in questo vmodo. È molto più comodo esprimere tali valori in notazione esponenziale o in notazione scientifica:

 $0,000001 = 10^{-6}; 100000000000 = 10^{10}$

TABELLA A.2 Proprietà delle potenze.

Operazione	Regola	Note	
Moltiplicazione	$a^m \cdot a^n = a^{m+n}$ m, n: numeri reali	Il prodotto di più potenze aventi la stessa base è una potenza avente la stessa base e avente come esponente la somma degli esponenti	
Divisione	$\frac{a^m}{a^n} = a^{m-n}$	Il quoziente di due potenze aventi la stessa base è una potenza avente la stessa base e come esponente la differenza degli esponenti	
Elevamento a potenza	$(a^m)^n = a^{m \cdot n}$	La potenza di una potenza è uguale a una potenza che ha la stessa base e come esponente il prodotto degli esponenti	
Altre proprietà			
Regola	Note		
$a^0 = 1$	La potenza di un numero (diverso da 0) avente esponente pari a zero è uguale a 1		
$a^1 = a$	La potenza di un numero avente esponente pari a 1 è uguale al numero stesso		
$a^{-n} = \frac{1}{a^n}$	Una potenza con esponente negativo equivale al reciproco della potenza con esponente positivo		
$(a \cdot b)^n = a^n \cdot b^n$	L'elevamento a potenza del prodotto di due o più numeri equivale al prodotto delle singole potenze ottenute elevando i numeri a potenza con esponente <i>n</i>		
$\sqrt[n]{a} = a^{1/n}$	La radice n -esima di un numero equivale all'elevamento a potenza con esponente pari al reciproco di n		
$\sqrt[n]{a^m} = a^{m/n}$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{1/n}}{b^{1/n}} = a^{1/n} \cdot b^{-1/n}$		

ESEMPIO

- $10^5 \cdot 10^3 = 10^{5+3} = 10^8$;
- $\bullet \quad \frac{10^5}{10^3} = 10^{5-3} = 10^2;$
- $(10^5)^3 = 10^{5 \cdot 3} = 10^{15}$;
- $10^0 = 1$; $10^1 = 10$.

5. Impiego della notazione scientifica nei calcoli

Utilizzando la notazione esponenziale o quella scientifica e le proprietà delle potenze è possibile semplificare i calcoli quando si devono eseguire prodotti, quozienti ed elevamenti a potenza di numeri.

Inoltre, la notazione scientifica e quella esponenziale sono indispensabili quando si devono esprimere numeri molto grandi o molto piccoli.

ESEMPIO

Moltiplicare tra loro i numeri 2000, 5000, 90 000.

Si esegue il prodotto tra i numeri esprimendoli in notazione scientifica, per semplificare i calcoli:

$$2000 \cdot 5000 \cdot 90000 = (2 \cdot 10^{3}) \cdot (5 \cdot 10^{3}) \cdot (9 \cdot 10^{4}) = 2 \cdot 5 \cdot 9 \cdot 10^{3+3+4} = 90 \cdot 10^{10} = 9 \cdot 10^{11}$$