Teorema di Thévenin

- ▶ Una qualunque rete lineare può essere vista da due suoi nodi come la serie di un generatore equivalente di tensione (V_{eq}) e una resistenza equivalente (R_{eq}) , dove:
 - V_{eq} è la differenza di potenziale misurata tra i nodi A e B aperti (cioè a vuoto);
 - R_{eq} è la resistenza vista dai nodi a vuoto, cortocircuitando i *generatori indipendenti* di tensione e aprendo i generatori indipendenti di corrente interni alla rete.

I *generatori indipendenti* sono quelli studiati finora; i generatori *dipendenti*, invece, sono quelli in cui il valore della tensione o corrente generata dipende da quello di un'altra tensione o corrente di controllo.

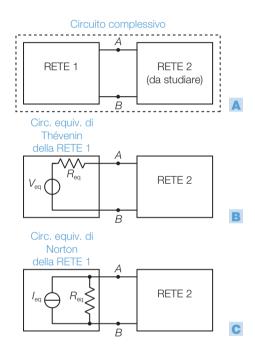


FIGURA 1 A) Circuito complessivo diviso in due reti 1 e 2, collegate tramite i nodi A e B; B) sostituzione della RETE 1 con il relativo circuito equivalente di Thévenin; C) sostituzione della RETE 1 con il relativo circuito equivalente di Norton.

➤ Il teorema di Thévenin si può utilizzare quando si vuole analizzare una rete (RETE 2) collegata, tramite due conduttori, a un'altra (RETE 1) di cui non interessa determinare i valori di tensioni e correnti; si applica in questo modo:

- 1) si scompone (FIGURA 1A) la rete in due sottoreti collegate con due conduttori (*A* e *B*), di cui la RETE 2 è quella da analizzare mentre la RETE 1 verrà sostituita dal circuito equivalente di Thévenin (un generatore e un resistore):
- 2) si seziona la rete nei nodi A e B e si ricava il circuito equivalente di Thévenin della RETE 1, calcolandone V_{eq} del generatore di tensione e R_{ea} della resistenza:
 - **2a)** V_{eq} è la differenza di potenziale tra i nodi aperti A e B della RETE 1 (FIGURA **2A**);
 - **2b)** R_{eq} è la resistenza vista tra i nodi A e B verso la RETE 1, cortocircuitando i generatori indipendenti di tensione e aprendo i generatori indipendenti di corrente interni alla rete (FIGURA **2B**);
- 3) si sostituisce alla RETE 1 il relativo circuito equivalente di Thévenin (generatore V_{eq} e resistore R_{eq}) e si calcolano le grandezze che interessano nella RETE 2 (FIGURA **1B**); data la semplicità del circuito equivalente della RETE 1, ora i calcoli delle tensioni e delle correnti della RETE 2 risulteranno semplificati.

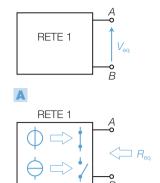


FIGURA 2 Teorema di Thévenin: A) la V_{eq} è la tensione tra morsetti A e B a vuoto (scollegati dalla RETE 2); B) la R_{eq} è la resistenza che si vede tra morsetti A e B a vuoto, una volta annullati i generatori indipendenti.

La rete in FIGURA 3 è costituita da un partitore di tensione a cui è collegata una resistenza di carico R_L . Calcolare i valori di I_0 e V_0 sulla resistenza di carico, utilizzando il teorema di Thévenin.

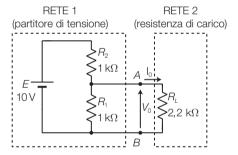


FIGURA 3

SOLUZIONE

La rete, nonostante la semplicità, rappresenta un caso molto significativo. Essa si potrebbe risolvere facilmente anche con le tecniche studiate nel SOTTOPARAGRAFO **5.1**, in questo modo sarebbe però indispensabile determinare anche i valori di tutte le altre grandezze della rete, oltre a quelli richiesti, I_0 e V_0 .

- 1) La scomposizione del circuito in due reti è evidente:
 - RETE 1: partitore di tensione, di cui non interessa compiere l'analisi, collegata alla RETE 2 tramite i morsetti A e B;
 - RETE 2: resistenza di carico R_{I} , di cui interessa calcolare i valori di I_{0} e V_{0} .
- 2) Si applica il teorema di Thévenin alla RETE 1:
 - **2a)** V_{eq} è la tensione sul partitore di tensione a vuoto (FIGURA **4A**):

$$V_{eq} = \frac{E \cdot R_1}{R_1 + R_2} = \frac{10 \cdot 1000}{1000 + 1000} = 5 \text{ V}$$

2b) R_{eq} è la resistenza vista dai morsetti A e B verso il partitore, pari al parallelo di R_1 e R_2 (FIGURA **4B**):

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2} = 500 \ \Omega$$

3) Collegando il circuito equivalente di Thévenin della RETE 1 alla RETE 2 (FIGURA 4C), si calcolano senza difficoltà I₀ e V₀:

$$I_0 = \frac{V_{eq}}{R_{eq} + R_I} = \frac{5}{500 + 2200} = 1,85 \text{ mA}$$

$$V_0 = R_1 I_0 = 2200 \cdot 2 \cdot 10^{-3} = 4,07 \text{ V}$$

Si osservi che la tensione del partitore a vuoto ($V_{eq}=5$ V) si riduce a $V_{0}=4$ V una volta collegato il carico. Questo perché il partitore si comporta come un generatore di tensione reale, dove la resistenza interna del generatore è data dalla R_{eq} .

Naturalmente la tensione mancante in uscita (1 V) è caduta sulla resistenza R_{eq} , come si può verificare facilmente con la legge di Ohm ($R_{eq} \cdot I_0 = 1$ V).

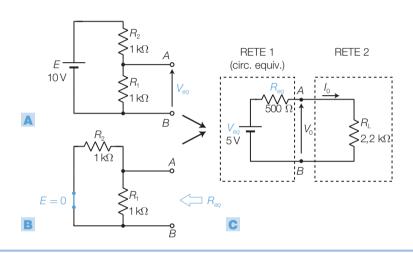


FIGURA 4

Teorema di Norton

▶ Il teorema di Norton è il duale del teorema di Thévenin e afferma che: una rete lineare può sempre esser vista da due suoi nodi come il parallelo di un generatore equivalente di corrente (I_{eq}) e una resistenza equivalente (R_{eq}) , dove:

 I_{eq} è la corrente che scorre tra i nodi posti in cortocircuito;

 R_{eq}^{eq} è la resistenza vista dai nodi a vuoto, cortocircuitando i generatori indipendenti di tensione e aprendo i generatori indipendenti di corrente interni alla rete.

Riferendosi alla FIGURA **1A**, è possibile, mediante il teorema di Norton, sostituire alla RETE 1 un circuito costituito da un generatore di corrente e una resistenza in parallelo (FIGURA **1C**); la I_{eq} corrisponde alla corrente tra i morsetti A e B cortocircuitati (FIGURA **5**), mentre la R_{eq} si calcola come nel caso del teorema di Thévenin (FIGURA **2B**).

Ricavando il circuito equivalente di Norton del circuito nell'ESEMPIO 1, la I_{ea} si trova cortocircuitando i morsetti d'uscita senza carico e risulta:

$$I_{eq} = E/R_2 = 10 \text{ mA}$$

mentre la R_{ea} è identica al caso Thévenin e vale sempre 500 Ω .

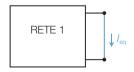


FIGURA **5** Teorema di Norton: calcolo di I_{eq} (la R_{eq} si trova come nel teorema di Thévenin).