ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. • 2003

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario.

PROBLEMA 1

Nel piano sono dati: il cerchio γ di diametro OA = a, la retta t tangente a γ in A, una retta r passante per O, il punto B, ulteriore intersezione di r con γ , il punto C intersezione di r con t.

La parallela per B a t e la perpendicolare per C a t s'intersecano in P. Al variare di r, P descrive il luogo geometrico Γ noto con il nome di **versiera di Agnesi** [da *Maria Gaetana Agnesi*, matematica milanese, (1718-1799)].

1. Si provi che valgono le seguenti proposizioni:

OD:DB=OA:DP

OC: DP = DP: BC

ove D è la proiezione ortogonale di B su OA.

- 2. Si verifichi che, con una opportuna scelta del sistema di coordinate cartesiane ortogonali e monometriche Oxy, l'equazione cartesiana di Γ è: $y = \frac{a^3}{x^2 + a^2}$;
- 3. Si tracci il grafico di Γ e si provi che l'area compresa fra Γ e il suo asintoto è quattro volte quella del cerchio γ .

PROBLEMA 2

Sia $f(x) = a2^x + b2^{-x} + c$ con a, b, c numeri reali. Si determinino a, b, c in modo che:

- 1. la funzione f sia pari;
- 2. f(0) = 2;

3.
$$\int_0^1 f(x) dx = \frac{3}{2 \ln 2}$$
.

Si studi la funzione g ottenuta sostituendo ad a, b, c i valori così determinati e se ne disegni il grafico G.

1

Si consideri la retta r di equazione y = 4 e si determinino, approssimativamente, le ascisse dei punti in cui essa interseca G, mettendo in atto un procedimento iterativo a scelta.

Si calcoli l'area della regione finita del piano racchiusa tra $\it r$ e $\it G$.

Si calcoli
$$\int \frac{1}{g(x)} dx$$
.

Si determini la funzione g' il cui grafico è simmetrico di G rispetto alla retta r.

QUESTIONARIO

- Quante partite di calcio della serie A vengono disputate complessivamente (andata e ritorno) nel campionato italiano a 18 squadre?
- Tre scatole A, B e C contengono lampade prodotte da una certa fabbrica di cui alcune difettose. A contiene 2000 lampade con il 5% di esse difettose, B ne contiene 500 con il 20% difettose e C ne contiene 1000 con il 10% difettose.

Si sceglie una scatola a caso e si estrae a caso una lampada. Qual è la probabilità che essa sia difettosa?

- Qual è la capacità massima, espressa in centilitri, di un cono di apotema 2 dm?
- Dare un esempio di polinomio P(x) il cui grafico tagli la retta y=2 quattro volte.
- Dimostrare, usando il **teorema di Rolle** [da *Michel Rolle*, matematico francese (1652-1719)], che se l'equazione:

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0$$

ammette radici reali, allora fra due di esse giace almeno una radice dell'equazione:

$$nx^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1 = 0$$

- Si vuole che l'equazione $x^3 + bx 7 = 0$ abbia tre radici reali. Qual è un possibile valore di b?
- 7 Verificare l'uguaglianza

$$\pi = 4 \int_0^1 \frac{1}{1+x^2} \, dx$$

e utilizzarla per calcolare un'approssimazione di π , applicando un metodo di integrazione numerica.

- Dare un esempio di solido il cui volume è dato da $\int_0^1 \pi x^3 dx$.
- Di una funzione f(x) si sa che ha derivata seconda uguale a sen x e che f'(0) = 1. Quanto vale $f\left(\frac{\pi}{2}\right) - f(0)$?
- Verificare che l'equazione $x^3 3x + 1 = 0$ ammette tre radici reali. Di una di esse, quella compresa tra 0 e 1, se ne calcoli un'approssimazione applicando uno dei metodi numerici studiati.

Durata massima della prova: 6 ore.

È consentito soltanto l'uso di calcolatrici non programmabili.

Non è consentito lasciare l'Istituto prima che siano trascorse 3 ore dalla dettatura del tema.

SOLUZIONE DELLA PROVA D'ESAME CORSO SPERIMENTALE P.N.I. • 2003

PROBLEMA 1

1. Con riferimento alla figura 1 si osserva che la similitudine tra i triangoli *ODB* e *OAC* permette di scrivere: *OD*: *DB* = *OA*: *AC*; essendo *AC* = *DP* la prima proporzione è dimostrata.

Il triangolo OAB è inscritto in una semicirconferenza, quindi $O\widehat{A}B = \frac{\pi}{2}$, i triangoli OAC e ABC sono simili, quindi: OC: AC = AC: BC che equivale alla seconda proporzione, essendo ancora AC = DP.

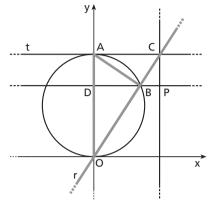


Figura 1.

2. Scegliendo il sistema di riferimento come in figura 1, l'equazione cartesiana del luogo Γ si otterrà dalle coordinate del punto P.

Le coordinate di B sono date dall'intersezione tra il cerchio γ ed il fascio di rette passanti per l'origine.

$$B: \begin{cases} x^2 + \left(y - \frac{a}{2}\right)^2 = \frac{a^2}{4} \\ y = mx \end{cases} = \begin{cases} x = \frac{am}{1 + m^2} \\ y = \frac{am^2}{1 + m^2} \end{cases}$$

Le coordinate di C sono date dall'intersezione tra la retta y = a ed il fascio di rette passanti per l'origine.

$$C: \begin{cases} y = a \\ y = mx \end{cases} = \begin{cases} x = \frac{a}{m} \\ y = a \end{cases}$$

Ma $y_P = y_B$ e $x_P = x_C$, dunque P: $\begin{cases} x = \frac{a}{m} \\ y = \frac{am^2}{1 + m^2} \end{cases}$, allora ricavando m dalla prima equazione e sostituen-

do nella seconda si ottiene: $y = \frac{a\left(\frac{a}{x}\right)^2}{1 + \left(\frac{a}{x}\right)^2} = \frac{a^3}{x^2 + a^2}$.

3. Γ : $y = \frac{a^3}{x^2 + a^2}$ è una funzione definita $\forall x \in \mathbb{R}$, pari (simmetrica rispetto all'asse delle y), e sempre positiva. Interseca l'asse delle y nel punto A(0; a), non interseca l'asse delle x. $\lim_{x \to \pm \infty} y(x) = 0$, il grafico ha un asintoto orizzontale y = 0.

3

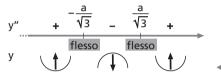
$$y' = \frac{-2a^3x}{(x^2 + a^2)^2} > 0$$
, per $x < 0$.

Il punto A(0; a) è un punto di massimo (figura 2).

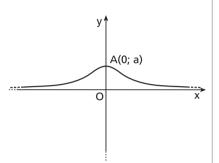
◀ Figura 2.

$$y'' = \frac{2a^3(3x^2 - a^2)}{(x^2 + a^2)^3} > 0$$
, per $x < -\frac{a}{\sqrt{3}}$ e per $x > \frac{a}{\sqrt{3}}$.

La concavità ha l'andamento di figura 3.



▼Figura 3.



▲ Figura 4.

L'area del cerchio γ è $\pi \cdot \frac{a^2}{4}$

L'area compresa tra Γ e l'asintoto y=0 si ottiene da: $2\int_0^{+\infty} \frac{a^3}{x^2+a^2} dx = 2\lim_{k\to +\infty} \int_0^k \frac{a}{\left(\frac{x}{a}\right)^2+1} dx$, ponen-

do $t = \frac{x}{a}$, si ottiene $2\lim_{k \to +\infty} \left[a^2 \cdot \operatorname{arctg}\left(\frac{x}{a}\right) \right]_0^k = 2 \cdot a^2 \cdot \frac{\pi}{2} = \pi a^2$, quindi è pari a quattro volte quella del cerchio γ .

PROBLEMA 2

1. Se la funzione è pari, allora

$$f(x) = f(-x) \Rightarrow a2^{x} + b2^{-x} + c = a2^{-x} + b2^{x} + c \Rightarrow a(2^{x} - 2^{-x}) = b(2^{x} - 2^{-x}) \Rightarrow a = b.$$

2. $f(0) = 2 \Rightarrow a + b + c = 2$.

$$3. \int_0^1 f(x) \, dx = \frac{3}{2 \ln 2} \Rightarrow \int_0^1 (a \, 2^x + b \, 2^{-x} + c) \, dx = \left[a \cdot \frac{2^x}{\ln 2} - b \cdot \frac{2^{-x}}{\ln 2} + cx \right]_0^1 = \frac{2a + b}{2 \ln 2} + c = \frac{3}{2 \ln 2}.$$

Le tre condizioni costituiscono il sistema $\begin{cases} a=b\\ a+b+c=2\\ \frac{2a+b}{2\ln 2}+c=\frac{3}{2\ln 2} \end{cases}$ con soluzioni $\begin{cases} a=1\\ b=1\\ c=0 \end{cases}$ quindi la funce

zione cercata è
$$g(x) = 2^x + 2^{-x} = 2^x + \frac{1}{2^x} = \frac{2^{2x} + 1}{2^x}$$
.

Studiamo la funzione g(x).

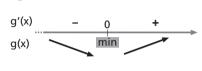
È definita positiva su tutto \mathbb{R} ; la funzione è pari, quindi simmetrica rispetto all'asse delle y.

Il grafico interseca l'asse delle y nel punto (0; 2), non interseca l'asse delle x.

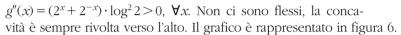
 $\lim_{x\to\pm\infty} g(x) = +\infty$, il grafico non presenta asintoti orizzontali.

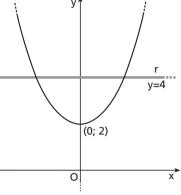
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{g(x)}{x} = \lim_{\substack{x \to +\infty \\ \text{co non present a as intoti obliquii.}}} \frac{2^x + 2^{-x}}{1} = \lim_{x \to +\infty} \frac{(2^x - 2^{-x}) \cdot \ln 2}{1} = +\infty, \text{ il grafi-}$$

 $g'(x) = (2^x - 2^{-x}) \cdot \ln 2 > 0$, se x > 0. Il punto (0; 2) è un punto di minimo (figura 5).



⋖ Figura 5.





▲ Figura 6.

<i>X</i> ₁	<i>X</i> ₂	h(x₁)	$h(x_2)$	α
1	2	-3	1	1,5
1,5	2	-2,31	1	1,75
1,75	2	-1,14	1	1,875
1,875	2	-0,22	1	1,9375
1,875	1,9375	-0,22	0,35	

Determiniamo le intersezioni tra la retta y = 4 e y = g(x):

$$\begin{cases} y = 2^{x} + 2^{-x} \\ y = 4 \end{cases} \Rightarrow \begin{cases} 2^{x} + 2^{-x} - 4 = 0 \\ y = 4 \end{cases} \Rightarrow \begin{cases} 2^{2x} - 4 \cdot 2^{x} + 1 = 0 \\ y = 4 \end{cases}$$

Applichiamo il metodo di bisezione alla funzione $b(x) = 2^{2x} - 4 \cdot 2^x + 1$:

Si arriva infine al valore $\alpha = 1,89997$.

 $2^{2x} - 4 \cdot 2^x + 1 = 0 \Rightarrow 2^x = 2 \pm \sqrt{3} \Rightarrow x = \log_2(2 \pm \sqrt{3})$, valori simmetrici rispetto all'asse delle ordinate. Il valore dell'area richiesta è data dall'integrale:

$$2 \int_{0}^{\log_{2}(2+\sqrt{3})} (4-2^{x}-2^{-x}) dx = 2 \left[4x - \frac{2^{x}}{\ln 2} + \frac{2^{-x}}{\ln 2} \right]_{0}^{\log_{2}(2+\sqrt{3})} = 8 \log_{2}(2+\sqrt{3}) - \left(\frac{4\sqrt{3}}{\ln 2} \right) \approx 5,2044$$

$$\int \frac{1}{g(x)} dx = \int \frac{2^{x}}{1+2^{2x}} dx, \text{ posto } t = 2^{x} \text{ e } dt = (2^{x} \ln 2) dx, \text{ segue:}$$

$$\frac{1}{\ln 2} \int \frac{t}{1+t^{2}} dt = \frac{1}{\ln 2} \cdot \operatorname{arctg}(2^{x}) + c.$$

5

Le equazioni della simmetria assiale, con asse la retta y = 4 sono:

$$\begin{cases} x' = x \\ y' = 8 - y \end{cases}$$
, dunque $y' = g'(x) = 8 - 2^x - 2^{-x}$.

© Zanichelli Editore, 2006

QUESTIONARIO

Le partite disputate sono pari alle disposizioni di 2 squadre distinte, ovvero le disposizioni semplici di 18 elementi distinti di classe 2:

$$D_{18,2} = 18 \cdot 17 = 306.$$

Detti A, B, C, E gli eventi così definiti:

A = estrazione di una lampada dalla scatola A;

B = estrazione di una lampada dalla scatola B;

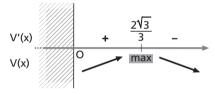
C= estrazione di una lampada dalla scatola C;

E= estrazione di una lampada difettosa.

Per il teorema delle probabilità totali: $P(E) = P(E|A) \cdot P(A) + P(E|B) \cdot P(B) + P(E|C) \cdot P(C)$, nel caso in

esame:
$$P(E) = \frac{1}{20} \cdot \frac{1}{3} + \frac{1}{5} \cdot \frac{1}{3} + \frac{1}{10} \cdot \frac{1}{3} = \frac{7}{60} \approx 0,1167.$$

Detta x l'altezza del cono e r la misura del raggio di base, si ha: $r = \sqrt{4 - x^2}$, dunque il volume risulta: $V(x) = \frac{1}{3}\pi(4 - x^2)x$. Per i vincoli geometrici del problema, $0 \le x \le 2$.



⋖ Figura 7.

Si studia la derivata prima: $V'(x) = \frac{1}{3}\pi(4-3x^2) > 0$, per $0 < x < \frac{2\sqrt{3}}{3}$. Lo schema di figura 7 mostra che

il valore massimo si ha per $x = \frac{2\sqrt{3}}{3}$. Il volume corrispondente è pari a

$$V_{\text{max}} = \frac{16\pi\sqrt{3}}{27} \text{ dm}^3 = 100 \cdot \frac{16\pi\sqrt{3}}{27} \text{ cl} \approx 322,45 \text{ cl}.$$

- P(x) = x(x-1)(x-2)(x-3) + 2.
- Il teorema di Rolle afferma:

"Data una funzione reale di variabile reale y = f(x), definita nell'intervallo chiuso e limitato [a, b], se la funzione soddisfa le ipotesi:

a. è continua in [a; b]

b. è derivabile in]a; b[

c. f(a) = f(b)

allora esiste un numero reale c appartenente all'intervallo tale che f'(c) = 0".

Nel caso in esame: $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$ è una funzione polinomiale, sempre continua e derivabile, con derivata $f'(x) = nx^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1$.

Se a e b sono due radici reali, allora f(a) = f(b) = 0, la funzione nell'intervallo [a; b] verifica il teorema di Rolle e quindi esiste almeno un punto c interno all'intervallo in cui la derivata prima si annulla: tale punto è la radice cercata.

L'equazione possiede tre radici reali se la funzione $x^3 + bx - 7 = 0$, continua e derivabile ovunque, interseca tre volte l'asse delle ascisse. La cubica deve possedere un massimo e un minimo relativo e questi devono avere segno discorde. La derivata prima $f'(x) = 3x^2 + b$ possiede due radici distinte, $x = \pm \sqrt{\frac{-b}{3}}$, se b < 0. $f'(x) = 3x^2 + b > 0$, se $x < -\sqrt{\frac{-b}{3}}$ o $x > \sqrt{\frac{-b}{3}}$. Lo schema in figura 8 mostra che per $x = -\sqrt{\frac{-b}{3}}$ si ha un massimo e per $x = \sqrt{\frac{-b}{3}}$ si ha un minimo.

$$f'(x) = -\sqrt{\frac{-b}{3}} - \sqrt{\frac{-b}{3}} + \frac{1}{\sqrt{\frac{-b}{3}}}$$

$$f(x) = -\sqrt{\frac{-b}{3}} - \sqrt{\frac{-b}{3}} + \frac{1}{\sqrt{\frac{-b}{3}}}$$

 $f\left(\sqrt{\frac{-b}{3}}\right) < 0 \Rightarrow \frac{2b\sqrt{-b}}{3\sqrt{3}} - 7 < 0, \forall b < 0. \text{ Poiché } f(0) = -7, \text{ il minimo è sempre negativo.}$

Invece:
$$f\left(-\sqrt{\frac{-b}{3}}\right) > 0 \Rightarrow \frac{b\sqrt{-b}}{3\sqrt{3}} - \frac{b\sqrt{-b}}{\sqrt{3}} - 7 > 0 \Rightarrow -b^3 > \frac{49 \cdot 27}{4} \Rightarrow b < \sqrt[3]{\frac{-1323}{4}} \cong -6,92.$$

Quindi b = -7, per esempio soddisfa già la condizione richiesta.

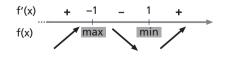
$$4 \int_0^1 \frac{1}{1+x^2} dx = 4[\arctan x]_0^1 = 4(\arctan 1 - \arctan 0) = \pi.$$

Per il calcolo approssimato di π si può utilizzare il metodo dei rettangoli, dividendo l'intervallo [0;1] in n=5 parti uguali, si ottiene:

$$4\int_0^1 \frac{1}{1+x^2} dx \cong 4 \cdot \frac{1-0}{5} \left[f(0) + f\left(\frac{1}{5}\right) + f\left(\frac{2}{5}\right) + f\left(\frac{3}{5}\right) + f\left(\frac{4}{5}\right) \right] = \frac{4}{5} \left[1 + \frac{25}{26} + \frac{25}{29} + \frac{25}{34} + \frac{25}{41} \right],$$

ovvero $\pi \cong 3,35$. Aumentando il numero n si può migliorare l'approssimazione.

- Il volume del solido ottenuto dalla rotazione attorno all'asse delle ascisse della curva y = f(x) in [a; b] è $V = \pi \int_a^b f^2(x) dx$. Nel caso in esame $V = \pi \int_0^1 x^3 dx$, dunque la rotazione attorno all'asse delle ascisse di $y = x^{\frac{3}{2}}$ in [0; 1] genera il solido.
- $\begin{cases} f''(x) = \operatorname{sen} x \\ f'(0) = 1 \end{cases}, \text{ integrando si ottiene: } f'(x) = \int \operatorname{sen} x \, dx = -\cos x + k_1, f'(0) = 1 \Rightarrow k_1 = 2.$ $f(x) = \int (-\cos x + 2) \, dx = -\sin x + 2x + k_2. \text{ Allora } f\left(\frac{\pi}{2}\right) f(0) = \pi 1.$
- Analogamente al quesito 6 la funzione $f(x) = x^3 3x + 1$ ha tre intersezioni con l'asse delle ascisse se possiede un massimo ed un minimo relativo e questi sono di segno discorde. La funzione è continua e derivabile su tutto \mathbb{R} . $f'(x) = 3x^2 3 > 0 \Rightarrow x < -1 \cup x > 1$. Per x = -1 si ha un punto di massimo di ordinata f(-1) = 3. Per x = 1 si ha un punto di minimo di ordinata f(1) = -1 (figura 9).



⋖Figura 9.

7

© Zanichelli Editore, 2006

Essendo f(0) = 1 > 0 e f(1) = -1 < 0, per il teorema di esistenza degli zeri, la funzione ammette uno zero all'interno dell'intervallo [0; 1].

Utilizzando il metodo di bisezione:

<i>x</i> ₁	<i>X</i> ₂	$f(x_1)$	$f(x_2)$	α
0	1	1	-1	0,5
0	0,5	1	-0,375	0,25
0,25	0,5	0,266	-0,375	0,375
0,25	0,375	0,266	-0,072	0,3125
0,3125	0,375	0,093	-0,072	

Si giunge infine al valore $\alpha \cong 0.3473$.

© Zanichelli Editore, 2006