
7. Combinazioni non sismiche: verifica ai carichi concentrati

Le NTC prescrivono le verifiche ai carichi concentrati, trasmessi per esempio dall'appoggio di travi e di archi sulla muratura. Le modalità di verifica, riportate nella precedente versione delle NTC (2005) sono ispirate alle prescrizioni dell'Eurocodice 6.

L'eccentricità trasversale del carico concentrato P non deve superare il valore t/4 (FIGURA 1).

FIGURA 1 Eccentricità trasversale dei carichi concentrati (travi, archi).

FIGURA 2 Diffusione del carico concentrato nella muratura (sezione longitudinale).

Si ipotizza che il carico *P* produca tensioni:

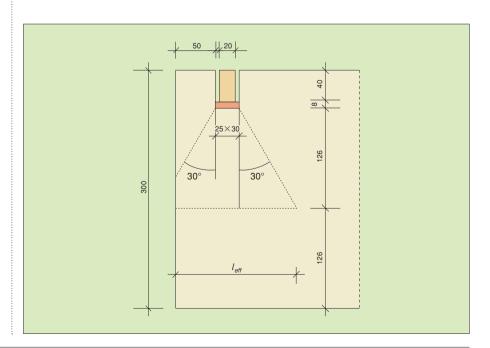
- uniformemente distribuite sull'area di appoggio A_c ;
- diffuse secondo un angolo di 30° con la verticale a partire dalle estremità dell'appoggio (►FIGURA 2).

La verifica può essere condotta controllando che sia:

$$N_d \le N_R = \beta_c A_c f_d$$

dove:

- N_d è il carico di progetto, ottenuto fattorizzando i contributi permanenti e variabili del carico P;
- A_c è l'area di appoggio;
- f_d è la resistenza di progetto a compressione della muratura.


Il coefficiente β_c vale generalmente 1.

Solo nel caso di muratura costruita con elementi resistenti di categoria I (v. paragrafo 1) si può assegnare al coefficiente β_c un valore maggiore, pari a:

$$\beta_c = \left(1 + 0.3 \frac{a_1}{h_c}\right) \left(1.5 - 1.1 \frac{A_c}{A_{eff}}\right)$$

dove:

- a_1 è la minima distanza tra l'estremità dell'appoggio e il termine del muro;
- A_c è l'area di appoggio;
- h_c è l'altezza del muro a livello dell'appoggio;
- $A_{eff} = t l_{eff}$ è l'area efficace di appoggio, essendo
 - t lo spessore del muro;
 - $-l_{eff}$ la lunghezza efficace dell'appoggio, misurata all'altezza $h_c/2$ del muro.

FIGURA 3 Progetto dell'appoggio di una trave.

APPLICAZIONE

Una trave in calcestruzzo armato di sezione 20 cm \times 40 cm (\blacktriangleright FIGURA 3) trasmette al muro un carico P di 100 kN, dovuto per il 70% ad azioni di tipo permanente e per il restante 30% ad un'unica azione di tipo variabile. Verifiare l'appoggio, tenendo conto che la muratura è costituita da mattoni di categoria I ($f_{bk} = 7,5 \text{ N/mm}^2$) e malta M15 di categoria I, a prestazione garantita.

Dalla >TABELLA 2 si ricava la resistenza caratteristica a compressione della muratura:

$$f_{\nu} = 5 \text{ N/mm}^2$$

da cui si determina (>TABELLA 4):

$$f_d = \frac{f_k}{2,2} = 2,27 \text{ N/mm}^2$$

In questo caso la presenza di mattoni di categoria I consente di assumere un coefficiente $\beta_c > 1$. Essendo:

$$B = 25 \text{ cm}$$
 $t = 30 \text{ cm}$ $A_c = t B = 750 \text{ cm}^2$ $a_1 = 50 \text{ cm}$ $h_c = 252 \text{ cm}$

$$I_{eff} = a_1 + B + \frac{h_c}{2} \text{tg} 30^\circ \cong 147 \text{ cm}$$
 $A_{eff} = t I_{eff} = 30.147 = 4410 \text{ cm}^2$

si ha:

$$\beta_c = \left(1 + 0.3 \frac{a_1}{h_c}\right) \left(1.5 - 1.1 \frac{A_c}{A_{eff}}\right) = \left(1 + 0.3 \cdot \frac{50}{252}\right) \left(1.5 - 1.1 \cdot \frac{750}{4410}\right) = 1.059 \cdot 1.31 \approx 1.39$$

e quindi:

$$N_d = 1.3 \cdot 0.70 \cdot 100 + 1.5 \cdot 0.30 \cdot 100 = 136 \text{ kN}$$

$$N_R = \beta_c A_c f_d = 1,39 \cdot 75\,000 \cdot 2,27 \cdot 10^{-3} \cong 237 \text{ kN}$$

Essendo $N_d < N_R$ l'appoggio è verificato.