## Il frigorifero

Il frigorifero è una macchina termica che:

- compie un lavoro negativo, cioè assorbe energia (tipicamente energia elettrica) dall'esterno;
- grazie a questa energia, assorbe calore da una zona a temperatura minore (l'interno del frigorifero);
- trasferisce questo calore a un'altra zona a temperatura maggiore (l'ambiente esterno).

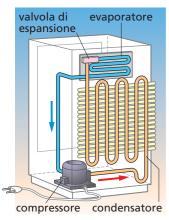
Anche il funzionamento del frigorifero (come quello di tutte le macchine termiche) è rappresentato da una trasformazione ciclica, ma, mentre nei motori la trasformazione ciclica è percorsa in senso orario,

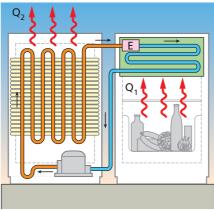
il funzionamento di una macchina frigorifera è descritto da una trasformazione ciclica percorsa in senso antiorario nel diagramma p-V.

Ciò permette al sistema di assorbire il calore dalla sorgente fredda e di cederlo alla sorgente calda. Perciò il lavoro totale W compiuto dalla macchina frigorifera in un ciclo è negativo: ciò significa che la macchina stessa non può funzionare se dall'esterno non viene compiuto su di essa un lavoro positivo |W|. Per il primo principio della termodinamica, il calore assorbito dall'ambiente esterno a ogni ciclo del frigorifero è

$$Q_2 = Q_1 + |W|.$$

### Il coefficiente di prestazione


L'efficienza del funzionamento di un frigorifero è misurata dal suo *coefficiente* di prestazione (in inglese *coefficient of performance*, spesso abbreviato con COP).


Il **coefficiente di prestazione** di un frigorifero è dato dal rapporto tra il calore sottratto alla sorgente fredda e il lavoro esterno compiuto a tale scopo:

$$COP = \frac{Q_1}{|W|}.$$

Valori tipici del COP sono compresi tra 2 e 6. Alti valori del coefficiente di prestazione indicano un frigorifero di qualità, che richiede poca energia elettrica (che paghiamo con la bolletta) per sottrarre calore al suo interno.

## Il funzionamento di un frigorifero





Il frigorifero è costituito da un ambiente chiuso da raffreddare e da un tubicino dentro al quale circola del vapore (figura a lato). Il tubicino, che è collegato a un compressore, passa dall'interno all'esterno della macchina.

- All'esterno del frigorifero, il compressore comprime il vapore fino a farlo liquefare nel condensatore; questo processo tende ad aumentare la temperatura del fluido.
- La serpentina esterna (in arancione nella figura) permette il passaggio di calore dal fluido all'ambiente in cui il frigorifero si trova.

• In questo processo assorbe energia dall'interno del frigorifero, che si raffredda. La serpentina interna (in verde nella figura) permette il passaggio di calore dall'interno del frigorifero al fluido.

• Il vapore torna all'esterno, viene compresso di nuovo e il ciclo si ripete.

La sostanza usata nel frigorifero deve avere la proprietà di condensare, anche a temperatura ambiente, a pressioni relativamente basse. Fino a non molto tempo fa era molto utilizzato il freon (dicloro-difluorometano), che liquefa a  $20\,^{\circ}\mathrm{C}$  se compresso a 5,6 volte la pressione atmosferica.

Negli anni '70 si è però scoperto che il freon e altri composti analoghi (indicati collettivamente con la sigla CFC, che significa cloro-fluoro-carburi) danneggiano in modo serio la fascia di ozono che circonda la Terra e che ci protegge dai raggi ultravioletti provenienti dal Sole.

Di conseguenza, in molte zone (tra cui la Comunità Europea) si è giunti alla messa al bando di queste sostanze, che sono state sostituite da altre meno pericolose.

#### DOMANDA

Un frigorifero ha un coefficiente di prestazione pari a 2,8.

Quanta energia occorre spendere per sottrarre 1,0 kJ di calore dall'interno del frigorifero?

# **ESERCIZI**

#### 1 Vero o falso?

**a.** Il frigorifero toglie calore alla sorgente fredda per compiere un lavoro positivo. V F

**b.** Il coefficiente di prestazione COP è

dato dal rapporto  $\frac{Q_1}{|W|}$  tra il calore

sottratto alla sorgente fredda e il lavoro esterno compiuto a tale scopo.

**c.** La sostanza utilizzata in un ciclo di funzionamento del frigorifero deve condensare, a temperatura ambiente, a pressioni molto elevate.

**d.** Il COP è, come il rendimento, un numero inferiore a 1.

V F

**Test.** In un frigorifero il calore è sottratto dall'interno e ceduto all'ambiente esterno. Ciò è possibile poiché:

A la sostanza contenuta nella serpentina interna passa dallo stato liquido a quello di vapore.

B la sostanza contenuta nella serpentina interna passa dallo stato solido a quello liquido.

C la sostanza contenuta nella serpentina interna passa dallo stato di vapore a quello liquido.

D la sostanza contenuta nella serpentina esterna passa dallo stato liquido a quello di vapore.

Per sottrarre  $1,85 \times 10^3$  J di calore dall'interno del frigorifero bisogna compiere un lavoro di 370 J.

Qual è il coefficiente di prestazione del frigorifero?

[5,00]

4 Un frigorifero ha un COP pari a 3,1. In un certo intervallo di tempo il suo motore compie un lavoro di 2,7 kW.

► Quanto vale il calore sottratto dall'interno del frigorifero nello stesso intervallo di tempo?

[8,4 kW]

Un frigorifero con un COP di 3,4 sottrae dal suo ambiente interno 6,7 kW di calore.

Calcola il lavoro compiuto dal motore del frigorifero per ottenere questo effetto.

[2,0 kW]