
22.9.11 Sistema di elaborazione dei segnali

Il segnale in uscita dal rivelatore, opportunamente amplificato, passa al sistema di elaborazione del segnale, che può essere un semplice integratore oppure un PC corredato da apposito software.

Figura 22.25

Rivelatore ELSD. All'interno del nebulizzatore, il solvente in uscita dalla colonna viene miscelato con azoto e forzato a passare attraverso un ago di piccolo calibro: si forma così una dispersione uniforme di gocce. Le gocce passano nel tubo riscaldato, dove la fase mobile evapora, formando un aerosol costituito da particelle di campione essiccate e vapore del solvente. Infine, nella cella a flusso le particelle del campione vengono colpite da una luce generata dal laser. La luce diffusa dalle particelle viene raccolta dal fotodiodo, che genera un segnale elettrico.

L'integratore elettronico, oltre a fornire il tracciato cromatografico, può integrare l'area dei picchi, calcolarne l'altezza, eseguire i programmi di calcolo necessari all'analisi quantitativa e riconoscere i picchi in base al loro tempo di ritenzione.

I PC, oltre a effettuare tutte le funzioni dell'integratore permettono di gestire completamente o in parte il cromatografo HPLC. In particolare possono gestire:

- il controllo delle pressioni nel sistema pneumatico;
- il controllo della temperatura:
- il controllo del flusso della fase mobile
- la programmazione di un gradiente di eluizione con due o più solventi;
- il controllo delle fasi di lavaggio e di condizionamento della colonna;
- il controllo e la pulizia dei sistemi di iniezione sia automatici sia semiautomatici;
- il controllo del rivelatore, con possibilità di cambiare il tipo di rivelatore nel corso dell'analisi o di effettuare ulteriori indagini su singoli picchi (spettro UV/visibile o IR, spettro di massa, e così via);
- una *eluizione multidimensionale*, dirigendo le bande eluite da una colonna verso altre colonne più selettive;
- la memorizzazione di diversi metodi di separazione;
- la memorizzazione di cromatogrammi e l'elaborazione in qualsiasi momento;
- i programmi di controllo di qualità dell'analisi e del cromatografo;
- il calcolo dei parametri cromatografici, a partire dai dati ricavati dal cromatogramma;
- il calcolo di area, altezza, base, base a metà altezza dei picchi;
- il riconoscimento qualitativo dei picchi caratteristici delle sostanze eluite in base alle istruzioni fornite;
- i calcoli previsti dai metodi analitici quantitativi;
- la stampa di un bollettino analitico e dell'eventuale certificato di autovalutazione (che dichiara le modalità con cui il sistema ha sottoposto a verifica il proprio funzionamento e le prestazioni).