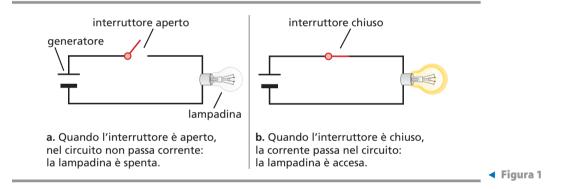
ESERCIZI IN PIÙ

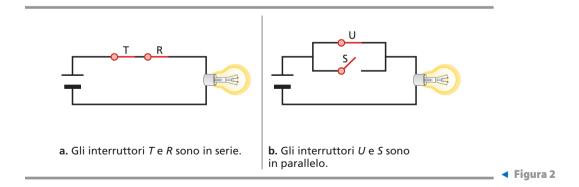
I CIRCUITI ELETTRICI E I CONNETTIVI LOGICI

Interruttori e proposizioni

Ogni proposizione logica può assumere solo uno dei due valori di verità: vero o falso.


Una situazione fisica che rappresenta perfettamente questa situazione a due valori è quella dei circuiti elettrici: in un circuito o passa corrente o non ne passa.

Un semplice circuito elettrico è formato per esempio da un generatore di corrente (quale una pila) collegato con un filo metallico a una lampadina e a un interruttore.


È possibile la seguente corrispondenza fra proposizione logica e posizione dell'interruttore:

interruttore aperto \rightarrow proposizione falsa;

interruttore chiuso \rightarrow proposizione vera.

In uno stesso circuito possiamo introdurre più di un interruttore in due modi differenti: in serie o in paral-

■ Interruttori in serie e congiunzione

Consideriamo un circuito con due interruttori in serie, *T* e *R*.

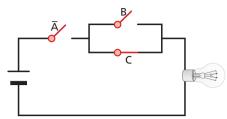
La corrente passa solo quando sono entrambi chiusi. In tutti gli altri casi la lampadina non si accende.

Questa situazione è analoga a quella che si ha in logica se, date le proposizioni $T \in R$, si considera $T \wedge R$.

La congiunzione è vera soltanto se sono vere entrambe T e R.

	T	R	$T \wedge R$
T R	V	V	V
T. R.	V	F	F
T R	F	V	F
T R	F	F	F

Interruttori in parallelo e disgiunzione


Consideriamo un circuito con due interruttori in parallelo, U e S. La corrente passa quando è chiuso uno dei due interruttori, oppure quando sono entrambi chiusi (figura 2b).

In logica abbiamo una situazione analoga considerando due proposizioni U e S e la loro disgiunzione $U \vee S$. Quest'ultima è vera se è vera U oppure S o entrambe le proposizioni.

	U	S	$U \vee S$
T S	V	V	V
S S	V	F	V
S	F	V	V
	F	F	F

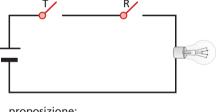
1 ESERCIZIO GUIDA

Consideriamo il seguente circuito.

Determiniamo a quale proposizione logica corrisponde e quale situazione è descritta. Se gli interruttori sono posizionati come in figura, nel circuito passa corrente? Qual è il valore di verità della proposizione?

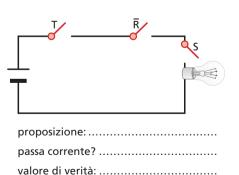
Consideriamo prima gli interruttori **in parallelo**. Essi corrispondono a $B \lor C$. Osserviamo poi che A è **in serie** con il gruppo precedente. Ciò corrisponde a una **congiunzione**. Il circuito complessivo rappresenta:

$$\overline{A} \wedge (B \vee C)$$
.

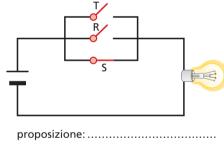

La situazione della figura corrisponde a:

$$\overline{A}$$
 [F], B [F] e C [V].

Nel <u>c</u>ircuito **la corrente non passa**. La proposizione $\overline{A} \wedge (B \vee C)$ è **falsa**.


Nei seguenti esercizi, dato il circuito della figura, determina a quale proposizione logica corrisponde. Se gii interruttori sono posizionati come in figura, nel circuito passa corrente? Qual è il valore di verità della proposizione?

2

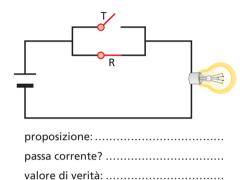


valore di verità:

3

4

T R	
proposizione:	

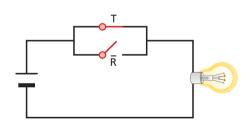

proposizione:

valore di verità:

passa corrente?

proposizione: passa corrente? valore di verità:

7



S S	
-	

proposizione: passa corrente? valore di verità:

ESERCIZIO GUIDA 10

Disegniamo un circuito corrispondente alla proposizione $T \vee \overline{R}$ che descriva la situazione: T vera, Rvera.

Il connettivo che unisce le due proposizioni è v, quindi dobbiamo disegnare due interruttori collegati in parallelo. L'interruttore T deve essere chiuso, mentre l'interruttore R deve essere aperto (poiché R è vera, R è falsa). Il circuito richiesto è disegnato a fianco.

La corrente passa per *T* e la lampadina si accende. Ciò corrisponde al fatto che se T e R sono vere, anche $T \vee R$ è vera.

Negli esercizi seguenti disegna i circuiti corrispondenti alle seguenti proposizioni.

- $(A \wedge B) \vee C$; $A \wedge (B \vee C)$.
- 12 $(A \lor B) \land C$; $A \lor (B \land C)$.
- $A \vee \overline{B}$; $A \wedge \overline{B}$; $\overline{A} \wedge B$; $\overline{A} \wedge \overline{B}$.
- $\overline{A} \lor B \lor C$; $A \lor (B \land \overline{C})$.
- $\overline{A} \wedge (B \vee \overline{C}); \quad A \wedge (\overline{B} \vee \overline{C}).$