LABORATORIO DI MATEMATICA LE RELAZIONI E LE FUNZIONI

Le funzioni numeriche con Excel

PER	DOBBIAMO	IL BOTTONE
tracciare un grafico	evidenziare la zona del foglio che contiene i dati da rap- presentare sul grafico, fare clic sul bottone <i>Autocomposi- zione grafico</i> e, nelle quattro finestre di dialogo che si pre- sentano una di seguito all'altra, scegliere le caratteristi- che del grafico che desideriamo che Excel rappresenti.	Il bottone di Autocomposizione grafico
variare una componente	 sostare con il puntatore sul riquadro grafico, facendo com di un grafico con il nome di una sua parte, fare clic con il tasto destro del mouse, scegliere nella tendina, che scende, il nome della compone operare i cambiamenti desiderati nei campi della finestra 	parire l'etichetta ente da variare, di dialogo apparsa.

ESERCITAZIONE GUIDATA

Per esaminare alcune caratteristiche della legge:

 $f: \mathbb{R}_0^+ \to \mathbb{R} \operatorname{con} y = kx^2 \operatorname{e} k \in \mathbb{R},$

costruiamo con Excel un foglio elettronico che:

• permetta di inserire tre valori per il coefficiente *k*,

• chieda gli estremi di variazione di *x*,

• mostri nel medesimo riferimento cartesiano i grafici delle tre funzioni corrispondenti ai valori assegnati di *k*,

e lo usiamo per realizzare diverse rappresentazioni grafiche.

Scriviamo le didascalie del foglio

• Scriviamo le didascalie e le indicazioni per inserire i dati dell'esercitazione: i tre valori del coefficiente *k* e gli estremi di variazione della *x* (figura 1).

Impostiamo la costruzione di una tabella

Per realizzare un grafico con Excel, inizialmente è necessario immettere i dati in una tabella. Se desideriamo, per esempio, rappresentare le tre funzioni con undici punti ognuna, dobbiamo preparare una tabella con undici righe e quattro colonne. Di queste ultime una è predisposta per contenere i valori della variabile indipendente *x*, le altre per i corrispondenti valori delle tre funzioni.
Per ottenere i valori di *x*, digitiamo = (B11-B10)/10 in C13 (stabilendo l'incremento di *x*), = B10 in A16 (importando il primo estremo dell'intervallo di variazione di *x*), = A16 +C\$13 in A17 (calcolando il secondo valore di *x*).

Figura 1 I dati scelti e la tabella.

	A	В	С	D	
1	La funzione	$f: \mathbb{R}_0^+ \rightarrow \mathbb{R}_+$	$\gamma = kx^2$ (con $k \in \mathbb{R}$	
2					
3	Assegniamo tre valori al coefficiente				
4	di proporzior	nalità <i>k</i>			
5	k =	0,50			
6	k =	1,00			
7	k =	2,00			
8					
9	Inseriamo gl	<u>i estremi di va</u>	riazione di x		
10	x1 =	0,00			
11	x2 =	2,00			
12					
13	L'increme	nto di x =	0,20		
14					
15	X	f1	f2	f3	
16	0,00	0,00	0,00	0,00	
17	0,20	0,02	0,04	0,08	
18	0,40	0,08	0,16	0,32	
19	0,60	0,18	0,36	0,72	
20	0,80	0,32	0,64	1,28	
21	1,00	0,50	1,00	2,00	
22	1,20	0,72	1,44	2,88	
23	1,40	0,98	1,96	3,92	
24	1,60	1,28	2,56	5,12	
25	1,80	1,62	3,24	6,48	
26	2,00	2,00	4,00	8,00	
27	1		Re P		

• Ricaviamo nelle tre colonne contigue i valori delle tre funzioni digitando in B16, in C16 e in D16 rispettivamente = B5 * A16^2$, = B6 * A16^2$ e = B7 * A16^2$ e copiando la zona B16:D16 sino alla riga 26.

Carichiamo la tabella

• Assegniamo dei valori a k, digitando rispettivamente = 1/2, 1 e 2 in B5, in B6 e in B7. Scegliamo per la variazione di x l'intervallo [0; 2], scrivendo 0 in B10 e 2 in B11. La tabella si carica di dati come vediamo in figura 1.

Realizziamo un grafico

• Evidenziamo la zona del foglio A15:D26 e facciamo clic sul bottone *Autocomposizione grafico*: vediamo apparire una prima finestra di dialogo, nella quale scegliamo il riferimento cartesiano con un clic su *Dispers*. (XY) del campo *Tipo* e poi un altro su *Dispersione con coordinate unite da linee smussate*. del campo *Scelte disponibili*.

Nella seconda finestra confermiamo i dati proposti da Excel.
Nella terza inseriamo una griglia nel piano cartesiano con un clic sul segnalibro *Griglia* e poi su *Griglia principale* dei campi *Asse dei valori* (X) e *Asse dei valori* (Y).

• Nella quarta con un clic su *come oggetto in Foglio1* di *Posiziona grafico* e poi uno su *Fine* facciamo apparire nel foglio il grafico delle tre funzioni.

• Per togliere il colore allo sfondo, sostiamo con il puntatore

Sistemiamo il grafico

▲ Figura 2 | grafici delle tre funzioni.

sul riquadro grafico, compare l'etichetta *Area del tracciato*, facciamo clic con il tasto destro del mouse, compare una tendina, dove scegliamo *Formato area del tracciato*. Nei campi *Bordo* e *Area* della conseguente finestra di dialogo selezioniamo *Assente*.

• Spostiamo, trascinandola con il mouse, la Legenda all'interno dell'area del disegno.

• Per variare le dimensioni del grafico, portiamo il puntatore su uno dei piccoli quadrati che compaiono ai vertici dell'oggetto grafico e, tenendo premuto il tasto del mouse, trasciniamo a piacere la figura verso l'interno o verso l'esterno. Al termine della sistemazione vediamo il grafico di figura 2.

Osserviamo il grafico realizzato

Tutte e tre le curve partono dall'origine degli assi cartesiani, crescono con l'andamento della proporzionalità quadratica e hanno l'andamento di una mezza parabola.

I dati scelti per il coefficiente *k* fanno sì che i valori della terza funzione siano sempre il doppio dei corrispondenti valori della seconda e quelli della seconda siano il doppio di quelli della prima.

I punti dei tre grafici sono infiniti. Noi ne abbiamo scelti solo undici, ed Excel li ha uniti con una linea operando un'interpolazione.

Esercitazioni

Opera come nell'esercitazione guidata, ma tieni presente che i coefficienti da assegnare sono più di uno.

1
$$y = ax + b$$
, $\operatorname{con} a, b \in \mathbb{R}$.

2
$$y = ax^2 + bx + c$$
, $\operatorname{con} a, b, c \in \mathbb{R}$.

Con Excel costruisci per ognuna delle seguenti coppie di funzioni f e g, definite in insiemi numerici, un foglio che permetta di ottenere delle tabelle di valori dei grafici delle loro funzioni composte.

Usa le tabelle per ricavare i grafici, sistemali, stampa i più significativi ed esamina sul foglio di carta l'andamento della funzione (dove è definita, dove cresce, dove interseca gli assi cartesiani, ...).

Funzioni definite da \mathbb{N} in \mathbb{N} .

$$3 f: n \mapsto n+5, \qquad g: n \mapsto 4n+1$$

4
$$f: n \mapsto n+2$$
, $g: n \mapsto n^2+1$.

Funzioni definite da \mathbb{Z} in \mathbb{Z} .

5
$$f: x \mapsto x^2 - 3x - 4$$
, $g: x \mapsto |x - 3|$

 $6 \quad f: x \mapsto x^3 - 3x, \qquad g: x \mapsto x - 1.$

Funzioni definite da \mathbb{R} in \mathbb{R} .

7
$$f: x \mapsto \frac{x}{x-1}$$
, $g: x \mapsto x-2$.
8 $f: x \mapsto \sqrt{x-1}$, $g: x \mapsto x^2 - 3$.

Con Excel costruisci per ognuna delle seguenti funzioni f un foglio che permetta di ottenere dei grafici dove appaia la simmetria rispetto alla bisettrice del primo quadrante della f con la sua funzione inversa.

9
$$f: x \mapsto 2x$$
.
10 $f: x \mapsto x^2 \operatorname{con} x \ge 0$.
11 $f: x \mapsto 2x - 2$.
12 $f: x \mapsto \frac{1}{x} \operatorname{con} x \ne 0$.