Scheda di lavoro

PROBLEMI, RAGIONAMENTI, DEDUZIONI

Ma quanti sono i numeri primi?

Man mano che si procede nella successione dei numeri naturali, è sempre più raro incontrare numeri primi. Chi garantisce che, prima o poi, non troveremo il più grande numero primo? I Greci hanno risolto questo problema:

«Esistono sempre numeri primi in numero maggiore di quanti numeri primi si vogliano proporre». (Euclide, *Elementi*, Libro IX, Proposizione 20, III secolo a.C.)

ANDREA: «È ovvio che i numeri primi sono infiniti: fanno parte dei numeri

naturali, che, come si sa, sono infiniti».

LUISA: «Non mi sembra che basti quello che dici! Facciamo così: se conside-

riamo i numeri primi 2 e 3, troviamo un nuovo numero primo cal-

colando: $2 \cdot 3 + 1 = 7 \dots$ ».

► Quella di Andrea è una buona giustificazione? A che cosa porta l'osservazione di Luisa?

1. La giustificazione di Andrea

Considera i divisori di 12. Quanti sono? I divisori di 12 fanno parte dei numeri naturali? Questo esempio è sufficiente per far capire che quella di Andrea non può essere accettata come giustificazione de fatto che i numeri primi sono infiniti. Spiega perché.
2. L'idea di Euclide
Euclide ha dimostrato l'infinità dei numeri primi sfruttando questa idea: costruire, a partire da un numero finito di numeri primi, un numero primo diverso da quelli di partenza. Considera i primi quattro numeri primi:,
Considera ora i primi sei numeri primi:,

3. La dimostrazione

Seguiamo il pensiero di Euclide:

- consideriamo i primi n numeri primi e chiamiamoli $p_1, p_2, p_3, ..., p_n$;
- calcoliamo $N = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n + 1$;
- osserviamo che N è un nuovo numero primo diverso da ciascuno dei numeri $p_1, p_2, p_3, ..., p_n$, oppure che nella scomposizione in fattori di N si ottiene un nuovo numero primo diverso da $p_1, p_2, p_3, ..., p_n$.

Dimostriamo quanto abbiamo osservato:

N non è divisibile per alcuno dei numeri primi $p_1, p_2, p_3, ..., p_n$ considerati. Infatti, dividendo N per p_1 otteniamo come resto; dividendo p_2 otteniamo come resto e così via. Dividendo p_2 uno qualunque dei numeri primi considerati il resto è sempre

Se N non è divisibile per $p_1, p_2, p_3, ..., p_n$, allora:

- o è un numero primo,
- o non è un numero primo e scomponendolo in fattori primi otteniamo