橉 TEST YOUR SKILLS

1 Write the sentence in bold type as an equation. (Let x represent the unknown number. DO NOT SOLVE.)
Twenty-five less a number is triple the quotient of six and twice the number.
(USA Southeast Missouri State University: Math Field Day, 2005)
2 The world's largest sheep ranch is located in Australia. There are three times as many sheep as kangaroos on the ranch, for a total of 87,000 animals. How many sheep are there on this ranch?
(CAN John Abbott College, Final Exam, 2000)
[65 250]
3 TEST If $a<b$ and $c<d$, which of the following statements is ALWAYS true?
(A) $a c<b d$
(D) $a-b<d-c$
(B) $\frac{a}{c}<\frac{b}{d}$
[国 $a+b>c+d$
(c) $a+b<c+d$
(USA Tennessee Mathematics Teachers Association: 39th Annual Mathematics Contest, 1995)

4 Solve the given inequalities, graph the solution set on a number line, and write the solution in interval notation.
a) $2 x-3 \geq 9+3 x$
b) $2 x+5>10$ or $2 x+5<-10$
c) $-3 \leq 4 x+1<5$
(USA Tacoma Community College, Review for Test, 2002)
$[$ a) $]-\infty,-12] ;$ b) $]-\infty,-\frac{15}{2}[\cup] \frac{5}{2},+\infty[$;c) $[-1,1[]$
5 Solve the simultaneous inequalities:

$$
\left\{\begin{array}{l}
-4 x-2 \leq-2 x+3 \\
\frac{2}{3} x+9 \geq x+6
\end{array}\right.
$$

Graph the solution set on a number line.

$$
\left[-\frac{5}{2} \leq x \leq 9\right]
$$

6 A consultant can be paid in two manners. Plan A: \$ 30 per hour; Plan B: $\$ 400$ plus $\$ 20$ per hour.
Suppose the job takes n hours. For what values of n is Plan A better for the consultant than Plan B?

$$
[n>40]
$$

7 If twelve is added to twice a number the result is three less than five times the number. Find the number.
(CAN John Abbott College, Final Exam, 2002)
8 Find the solution set: $8<2(4-m)$.
(USA Southeast Missouri State University: Math Field Day, 2005)
[$m<0$]
9 Find the measure of an angle such that three times the complement of the angle is 30° more than the angle.
(CAN John Abbott College, Final Exam, 2002)
[60 ${ }^{\circ}$]
10 The length of each leg of an isosceles triangle is $x+1$ and the length of the base is $3 x-2$. Determine all possible values of x. (The triangle should be nondegenerate; i.e. not just a straight line. Note also that x need not be an integer; your answer should be an inequality.)
(USA Lehigh University: High School Math Contest, 2005)

$$
\left[\frac{2}{3}<x<4\right]
$$

GLOSSARY

to add: aggiungere, addizionare	length: lunghezza	sheep: pecora
bold type: carattere neretto	less: meno	to solve: risolvere
consultant: consulente	number line: retta numerica	statement: enunciato
to graph: rappresentare	to pay-paid-paid: pagare	straight line: linea retta
graficamente	plan: piano, progetto	true: vero
inequality: disequazione	plus: più	twice: due volte
job: lavoro	sentence: frase	unknown: sconosciuto
kangaroo: canguro	solution set: insieme	value: valore
leg: lato	delle soluzioni	

