LABORATORIO DI MATEMATICA LE FUNZIONI GONIOMETRICHE CON WIRIS

Gli operatori goniometrici in Wiris

La funzione	restituisce
$sin(\alpha)$	il seno dell'angolo α
$\cos(\alpha)$	il coseno dell'angolo α
tan(α)	la tangente dell'angolo α
cotan(α)	la cotangente dell'angolo α

La funzione	restituisce
arcsen(<i>n</i>)	l'arcoseno di n
arco_coseno(<i>n</i>)	l'arcocoseno di n
arcotan(<i>n</i>)	l'arcotangente di <i>n</i>

Scriviamo i nomi degli operatori in lettere minuscole.

I sistemi di misura degli angoli in Wiris

Per default Wiris considera le misure degli angoli in radianti. Per cambiare i sistemi di misura abbiamo a disposizione l'istruzione *convertire*.

ESERCITAZIONE GUIDATA

Con Wiris:

• costruiamo un blocco di istruzioni tale che, ricevuta l'ampiezza α di un angolo data come frazione

di π appartenente all'intervallo $\left[0; \frac{\pi}{2}\right]$ e fatto operare con il comando *Calcola*, mostri una tabella che contenga α e i suoi archi associati, espressi in radianti esatti, in radianti approssimati, in gradi sessadecimali, e i corrispondenti valori del seno;

• proviamo il blocco inizialmente con $\alpha = \frac{\pi}{6}$ e poi con altri angoli;

• realizziamo inoltre un grafico della sinusoide, dove evidenziamo la posizione di α e dei suoi archi associati.

L'impostazione della costruzione della tabella

• Iniziamo a scrivere la sessione di lavoro per ottenere la tabella, assegnando ad α il primo valore consigliato $\frac{\pi}{6}$.

• Importiamo dal menu *Programmazione* il modello della struttura logica *se ... allora ... fine*, la selezione binaria contratta (figura 1).

$\alpha = \pi/6$ se <u>condizione</u> allora	
	 -
Figura 1	
$\alpha = \pi/6$ se $\alpha \ge 0 \land \alpha < \pi/2$ allora	

• Nel campo della condizione scriviamo il controllo dell'appartenenza dell'angolo all'intervallo imposto (figura 2).

Bergamini Trifone Barozzi Corso base verde di matematica © Zanichelli 2009

La riproduzione di questa pagina è autorizzata ai soli fini dell'utilizzo nell'attività didattica degli alunni delle classi che hanno adottato il testo.

<i>Matrici</i> una matrice (tabella), che richiediamo sia formata da quattro righe e da quattro colonne (figura 3).	$\alpha = \pi/6$ se $\alpha \ge 0 \land \alpha < \pi/2$ allora $\left(\begin{array}{c} 0 & 0 \\$
	▲ Figura 3
• Nella prima colonna scriviamo l'angolo α e i suoi associati (figura 4). 1 goli per 1, (il numero 1 seguito dal pu

$\begin{bmatrix} \alpha = \pi/6 \end{bmatrix}$				
se $\alpha \ge 0 \wedge \alpha < \pi$ $\begin{pmatrix} \alpha \\ \pi - \alpha & (r) \\ \pi + \alpha & (r) \\ 2\pi - \alpha & (2) \\ fine \end{pmatrix}$	$(\alpha) \cdot 1.$ $\pi - \alpha) \cdot 1.$ $\pi - \alpha) \cdot 1.$ $\pi - \alpha) \cdot 1.$ $\cdot \pi - \alpha) \cdot 1.$	convertire (α, \circ) convertire $((\pi - \alpha), \circ)$ convertire $((\pi + \alpha), \circ)$ convertire $((2 \cdot \pi - \alpha), \circ)$	$\sin(\alpha)$ $\sin(\pi - \alpha)$ $\sin(\pi + \alpha)$ $\sin(2 \cdot \pi - \alpha)$	Figura 4 L'impostazione della tabella con gli archi associati a $\frac{\pi}{6}$.

La realizzazione della tabella

• Facciamo clic sul pulsante *Calcola* e otteniamo l'elaborazione del blocco e la tabella richiesta, come vediamo nella figura 5.

• Se desideriamo gli archi associati a un altro angolo, spostiamo il cursore sulla prima riga del blocco, quella che contiene l'assegnazione dell'angolo, cambiamo il valore dell'angolo e diamo di nuovo *Calcola*.

– Se l'angolo appartiene all'intevallo compreso fra 0 e $\frac{\pi}{2}$, vediamo una nuova tabella.

– Se l'angolo non appartiene all'intevallo, dopo la freccia rossa appare la risposta *nullo*.

$\Rightarrow \begin{pmatrix} \frac{-6}{6} & 0.3236 & 30.6 & \frac{1}{2} \\ \frac{5 \cdot \pi}{6} & 2.618 & 150.6 & \frac{1}{2} \\ \frac{7 \cdot \pi}{6} & 2.618 & 210.6 & -\frac{1}{2} \\ \frac{11 \cdot \pi}{6} & 5.7596 & 330.6 & -\frac{1}{2} \end{pmatrix}$ $\Rightarrow Figura 5 La tabella con gli archi associati a \frac{\pi}{6}.$

Le istruzioni per il grafico

• Per ottenere il grafico richiesto, scriviamo in un altro blocco (figura 6) all'interno dell'operatore *tracciare* la funzione *seno* e all'interno di un altro *tracciare* le coordinate dei punti della sinusoide corrispondenti ad α e ai suoi angoli associati.

Esercitazioni

1	Costruisci un blocco di istruzioni di Wiris per inserire un valore s del seno, ottenere con l'attivazione del
	comando <i>Calcola</i> , se possibile, il valore corrispondente dell'angolo α appartenente all'intervallo $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$,
	tracciare i grafici della funzione seno, della funzione arcoseno e della bisettrice del I quadrante in un mede- simo riferimento cartesiano, con l'evidenziazione dei punti di coordinate (s ; α) e (α ; s).
2	Costruisci un blocco di istruzioni di Wiris per inserire un valore c per il coseno e operare come nell'esercitazione precedente (l'angolo deve appartenere all'intervallo $[0; \pi]$).
3	Costruisci un blocco di istruzioni di Wiris per inserire un valore <i>t</i> per la tangente e operare come nell'eser- citazione precedente.
4	Data la funzione sinusoidale $y = a \operatorname{sen}(bx + c)$, costruisci un blocco che contenga l'assegnazione di un va-
	lore ad <i>a</i> , per esempio 4, un valore a <i>b</i> , per esempio $\frac{1}{2}$, e, con l'istruzione <i>spostamento</i> , di un intervallo di
	valori a <i>c</i> , per esempio <i>spostamento</i> (0π), e permetta di aprire una finestra grafica dove appaiano il grafico della sinusoide e l'intervallo dei valori di <i>c</i> . Sistema il grafico ottenuto e sposta il corsoio sull'intervallo di valori di <i>c</i> , per osservare la sua influenza sull'andamento della sinusoide.
5	Opera come nell'esercitazione precedente per esaminare l'influenza del coefficiente a sul grafico sinusoidale.
6	Opera come nell'esercitazione 4 per esaminare l'influenza del coefficiente b sul grafico sinusoidale.
7	Opera come nell'esercitazione guidata, assegnando l'ampiezza dell'angolo α nel sistema sessadecimale e sostituendo alla colonna dei valori del seno quella dei valori del coseno.
8	Opera come nell'esercitazione guidata, assegnando l'ampiezza dell'angolo α nel sistema sessagesimale e sostituendo alla colonna dei valori del seno quella dei valori della tangente.
9	Costruisci un blocco di Wiris che richieda l'ampiezza di due angoli α e β e che, fatto elaborare, dia i valori dei due membri delle seguenti formule goniometriche:
	$sen^2\alpha + cos^2\alpha = 1;$ $sen 2\alpha = 2 sen \alpha cos \alpha;$

 $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta;$ $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \sin\alpha\cos\beta.$

Scrivi nel blocco diversi commenti e didascalie chiarificatori dei dati e dei risultati.