Scheda riassuntiva 6

CAPITOLI 23-24

Combustione - energia termica trasmissione del calore

Combustibili e combustione

Combustione

Reazione chimica rapida e con forte produzione di energia termica (esotermica) tra un combustibile e un comburente. Il comburente è costituito dall'ossigeno presente nell'aria.

Le sostanze combustibili hanno come componenti fondamentali:

carbonio
$$C + O_2 = CO_2 + 33\ 900\ kJ/kg$$
 $12\ kg + 32\ kg = 44\ kg$ **idrogeno** $2 \cdot H_2 + O_2 = 2 \cdot H_2O + 120\ 000\ kJ/kg$ $4\ kg + 32\ kg = 36\ kg$

Nello schema sottostante sono indicati alcuni tra i principali combustibili solidi, liquidi e gassosi:

COMBUSTIBILI			
Solidi	Liquidi	Gassosi	
Carbone Legno Coke	Benzina Gasolio Kerosene Olio combustibile Etanolo Metanolo	Gas di petrolio liquefatto (GPL) Metano Idrogeno Propano Butano Biogas	

Combustibili fossili

Carbone, petrolio, gas naturali.

Il petrolio grezzo è un miscuglio di **idrocarburi** (composti C_nH_{2n+2}) e altri componenti minori (zolfo, ossigeno, azoto ecc.). Per distillazione frazionata dal petrolio si ricavano i più comuni combustibili liquidi e gassosi.

Potere calorifico inferiore H_i (J/kg) di un combustibile

Energia termica sviluppata con la combustione completa di 1 kg di combustibile, escludendo quella assorbita nella produzione di vapore acqueo.

Nei combustibili gassosi il potere calorifico è spesso riferito al volume anziché alla massa: (J/Nm³). Poiché il volume dei gas dipende dalla pressione e dalla temperatura, convenzionalmente ci si riferisce alle condizioni normali (**Nm³** alla temperatura di 0 °C e pressione 760 mmHg).

Potere calorifico superiore H_s

Si ottiene dal H_i aggiungendo il calore recuperato con la condensazione del vapore acqueo presente tra i prodotti della combustione.

Aria

Usata come comburente per il suo contenuto di ossigeno O_2 ; l'altro componente principale, l'azoto N_2 , non partecipa alla combustione.

	in peso	in volume
Ossigeno O ₂	23%	21%
Azoto N ₂	77%	79%

Aria teorica A_t (kg/kg): massa di aria necessaria per la combustione completa di 1 kg di combustibile sulla base della reazione chimica.

Eccesso d'aria (e%): percentuale di aumento, rispetto ad A_p della massa d'aria necessaria a causa della non perfetta miscelazione aria-combustibile; è massima nei combustibili solidi a pezzatura grande.

Aria pratica A_p (kg/kg):

$$A_{p} = A_{t} \cdot (1 + e)$$

Prodotti e perdite nella combustione

Per la legge di conservazione della massa si ha:

combustibili + aria
$$\rightarrow$$
 fumi (N₂, CO₂, SO_x, NO_x, CO, H₂O_{vap}, O₂ ecc.)

$$1 \text{ kg} + A_t \text{ } (1 + e) = m_f$$

Efficienza della combustione

Rapporto tra l'energia termica utile sviluppata per ogni kg di combustibile e il potere calorifico inferiore del combustibile.

$$\varepsilon = \frac{Q_u}{H_i}$$

Elementi principali che determinano l'efficienza:

- dosaggio dell'aria comburente: se troppo alto abbassa la temperatura, se troppo basso rende incompleta la combustione (perdite per incombusti);
- temperatura dei fumi all'uscita: se troppo bassa dà luogo a condense, se troppo alta comporta energia termica inutilizzata (**perdite per calore sensibile**);
- presenza di umidità nel combustibile: assorbe energia termica nella vaporizzazione dell'acqua presente (perdite per calore latente).

Inquinanti e inquinamento

La combustione è una delle principali cause dell'inquinamento atmosferico, che è legato sia a fenomeni naturali (processi biologici, eruzioni vulcaniche, incendi ecc.) sia alle attività umane:

- traffico veicolare;
- riscaldamento degli ambienti;
- produzione industriale;
- agricoltura.

Sostanze inquinanti

- composti dello zolfo;
- ossidi di azoto NO_x;
- composti del carbonio: monossido di carbonio (CO) e biossido o anidride carbonica (CO₂);
- composti alogenati (HCl, HF, HBr, CFC);
- composti organici (costituiti da carbonio, idrogeno e ossigeno);
- particolato: particelle di piccolissime dimensioni sospese in atmosfera; sono inalabili quelle con diametro inferiore a 10 μ m (PM₁₀).

Fenomeni di inquinamento

Alcuni tra i principali fenomeni di inquinamento sono:

- effetto serra: accumulo di alcuni gas (gas serra: CO₂, CH₄, N₂O, HCF, SF₆), che bloccano in parte la radiazione riflessa dalla Terra, provocando un innalzamento della temperatura media terrestre;
- piogge acide: aumento della naturale acidità della pioggia, dovuto alla concentrazione nell'atmosfera di composti dello zolfo e dell'azoto. Provoca corrosioni, danni alla vegetazione, distruzione di batteri necessari all'equilibrio dell'ecosistema ecc.
- **smog fotochimico**: a seguito di reazioni fotochimiche indotte dalla componente ultravioletta dei raggi solari e dalla presenza di ossidi di azoto (NO_x) e composti organici volatili (VOC) nella parte bassa dell'atmosfera si formano agenti (tra cui l'ozono) tossici per gli esseri umani, gli animali e i vegetali.
- buco dell'ozono: diminuzione anomala nella stratosfera terrestre della
 concentrazione di ozono, che svolge una funzione di schermo nei confronti delle radiazioni ultraviolette (raggi UV) provenienti dal sole. L'eccessiva esposizione a questi raggi è causa di malattie nell'uomo, rallentamento della fotosintesi nella vegetazione, mentre la catena alimentare
 marina subisce scompensi.

Energia termica

Energia termica

Viene scambiata tra i corpi dalle temperature più alte alle temperature più basse. Tendenza irreversibile all'*equilibrio termico*. Lo scambio è impedito da *pareti adiabatiche*.

Capacità termica massica $c(J/kg \cdot K)$

Quantità di calore necessaria per variare di 1 K (o 1 °C) la temperatura di 1 kg di massa di una sostanza.

Equazione calorimetrica

$$Q = m \cdot c \cdot \Delta T$$
$$J = kg \cdot \frac{J}{kg \cdot K} \cdot K$$

Flusso termico o potenza termica

Rapporto tra quantità di calore scambiato e tempo impiegato.

$$\Phi = Q_m \cdot c \cdot \Delta T$$

$$W = \frac{kg}{s} \cdot \frac{J}{kg \cdot K} \cdot K$$

Trasmissione del calore

Conduzione

Propagazione di energia termica senza movimento di materia visibile all'esterno.

Conduttività termica λ (W/m · K): coefficiente di conduzione. Mediamente elevato nei solidi, in particolare nei metalli; più basso nei liquidi e soprattutto nei gas.

I *materiali isolanti* sono caratterizzati da valori di conduttività molto bassi a causa della struttura porosa:

$$\lambda < 0.065 \frac{W}{m \cdot K}$$

Flusso termico per conduzione:

$$\Phi = A \cdot \frac{\lambda}{s} \cdot \Delta T$$

$$W = m^2 \cdot \frac{W}{m^2 \cdot K} \cdot K$$

Convezione

Propagazione di energia termica da una superficie a un fluido che la lambisce attraverso i moti prodotti dalla minor densità delle zone calde del fluido rispetto a quelle fredde (*moti convettivi*).

Si distingue la *convezione naturale* dalla *convezione forzata*, in cui la circolazione del fluido è favorita da una macchina (ventilatore, pompa ecc.).

Coefficiente di convezione ($W/m^2 \cdot K$): dipende dalle caratteristiche e velocità del fluido, dalla temperatura, forma e orientamento della superficie.

Flusso termico per convezione:

$$\Phi = A \cdot \alpha \cdot \Delta T$$

$$W = m^2 \cdot \frac{W}{m^2 \cdot K} \cdot K$$

Irraggiamento

Trasferimento di energia tra corpi a temperatura diversa tramite radiazioni elettromagnetiche a frequenze minori di quelle della luce (*infrarosso*).

Ogni superficie in parte assorbe la radiazione, in parte la riflette; il **corpo nero** è quello che idealmente assorbe il 100% della radiazione incidente.

Legge di Stefan-Boltzmann sulla potenza di emissione da un corpo a temperatura *T* verso quelli vicini:

$$\boldsymbol{E} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{T}^4 \left(\frac{\mathbf{W}}{\mathbf{m}^2} \right)$$

 $\sigma = 5,67 \cdot 10 - 8 \text{ (W/m}^2 \cdot \text{K)}$ costante del corpo nero; $\varepsilon = \text{coefficiente di emissività } (0 \div 1), \text{ pari a 1 per il corpo nero.}$

Adduzione

Lo scambio di calore tra una parete e il fluido adiacente, che coinvolge conduzione, convezione e irraggiamento, viene denominato **adduzione**. Il calcolo viene affrontato come se si trattasse di semplice convezione, adottando un opportuno coefficiente α .

Resistenza termica

In analogia con il caso delle correnti elettriche si definisce la **resistenza termica**:

Conduzione	Convezione-Adduzione	
$R = \frac{s}{\lambda} \left(\frac{m}{W/(m \cdot K)} = \frac{m^2 \cdot K}{W} \right)$	$R = \frac{1}{\alpha} \left(\frac{1}{W/(m^2 \cdot K)} = \frac{m^2 \cdot K}{W} \right)$	
$s = \text{spessore dello strato} \\ \lambda = \text{coefficiente di conduzione del materiale}$	α = coefficiente di convezione/adduzione	

Flusso termico tra due fluidi attraverso una parete

Uno dei calcoli tipici della termotecnica è quello del **flusso termico** scambiato tra due fluidi a diversa temperatura separati da una parete di superficie *A*, che può essere composta da strati di materiali diversi con eventuali intercapedini d'aria o di materiali isolanti. Il passaggio attraverso i componenti solidi interni alla parete avviene per conduzione; gli scambi fluidoparete coinvolgono conduzione, convezione e irraggiamento:

$$\Phi = A \cdot U \cdot \Delta T$$

$$W = m^2 \cdot \frac{W}{m^2 \cdot K} \cdot K$$

Trasmittanza $U(W/m^2 \cdot K)$: flusso termico per una superficie unitaria e per un salto di temperatura di 1 K.

Resistenza termica totale: somma delle resistenze relative agli scambi fluidi-parete (coefficienti α_1 e α_2) e agli strati della parete (coefficienti λ_1 e λ_2 , spessori s_1 e s_2):

$$R_t = \frac{1}{U} = \frac{1}{\alpha_1} + \sum \frac{s_i}{\lambda_i} + \frac{1}{\alpha_2} \left(\frac{m^2 \cdot K}{W} \right)$$

In presenza di una intercapedine d'aria si aggiunge la relativa resistenza $1/\alpha$.