Cerchio inscritto

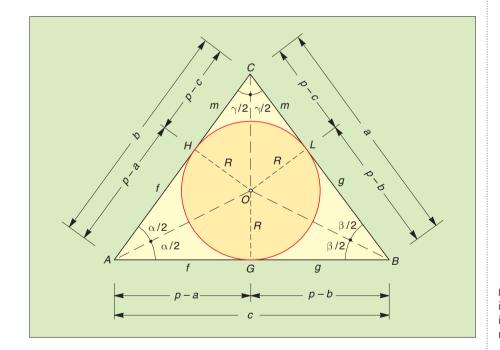
Considerando le proprietà di ciascuna delle tre coppie di triangoli definiti nella FIGURA 1 dalle tre bisettrici e dai tre raggi del cerchio inscritto; dalla geometria si ha:

$$\overline{AH} = \overline{AG} = f$$
 $\overline{BG} = \overline{BL} = g$ $\overline{CH} = \overline{CL} = m$

È poi evidente che:

(I)
$$a = m + g$$
 (II) $b = m + f$ (III) $c = f + g$

e conseguentemente, sommando membro a membro:


$$m + g + f = p$$

Da quest'ultima si ottiene:

$$m = p - (f + g)$$
 e per la (III) risulta: $m = p - c$
 $g = p - (m + f)$ e per la (II) risulta: $g = p - b$
 $f = p - (m + g)$ e per la (I) risulta: $f = p - a$

Infine dai triangoli rettangoli AOG, BOG e COH, si ha:

$$R = (p-a) \operatorname{tg} \frac{\alpha}{2}$$
 $R = (p-b) \operatorname{tg} \frac{\beta}{2}$ $R = (p-c) \operatorname{tg} \frac{\gamma}{2}$

FAQ

► Da che cosa è definito il centro del cerchio inscritto a un triangolo?

Dalla intersezione delle bisettrici dei tre angoli. A esso viene assegnato il nome di incentro.

FIGURA 1 Cerchio inscritto in un triangolo. Esso possiede importanti proprietà geometriche, molto utili in ambito topografico.