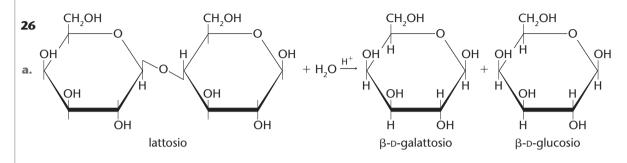
Biochimica: le biomolecole • Capitolo B1

VERIFICA LE TUE CONOSCENZE


1 A	7 A	13 B
2 A	8 B	14 C
3 B	9 A	15 D
4 A	10 B	16 A
5 B	11 B	17 D
6 B	12 C	18 A

VERIFICA LE TUE ABILITÀ

23 a.
$$\alpha$$
-D-fruttosio = 26,63%

24 CHO
$$CH_2OH$$
 $HO-H$ $HO-H$
 $HO-H$ $HO-H$
 $H-OH$ $H-OH$
 CH_2OH $CHOH$
D-mannosio $D-mannitolo$

b.
$$\beta$$
-D-fruttosio = 73,37%

27 formula razionale

$$\mathsf{CH_{3}} - \mathsf{CH_{2}} - \mathsf{CH$$

formula condensata

CH₃(CH₂)₁₂COOH

28 formula razionale

$$\mathsf{CH_{3}-CH_{2$$

formula condensata

CH₃ CH₂ CH=CH CH₃ CH=CH (CH₂)₇ COOH

formula topologica (i tre doppi legami sono cis)

$$\begin{array}{c} O \\ & \\ CH_{2}OC \ (CH_{2})_{14} \ CH_{3} \\ & \\ CH_{2}OH \\ \end{array} + 3 \ CH_{3} \ (CH_{2})_{14} \ COOH \longrightarrow \begin{array}{c} CH \ OC \ (CH_{2})_{14} \ CH_{3} \\ & \\ & \\ CH_{2}OC \ (CH_{2})_{14} \ CH_{3} \\ \end{array}$$

glicerolo

acido palmitico

tripalmitato di glicerile

$$\begin{array}{c} O \\ \parallel \\ CH_2OC \ (CH_2)_7 \ CH=CH \ CH_2 \ CH=CH \ (CH_2)_4 \ CH_3 \\ \parallel \ \\ 0 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH_2OC \ (CH_2)_7 \ CH=CH \ CH_2 \ CH=CH \ (CH_2)_4 \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH_2OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH_2OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

$$\begin{array}{c} CH \ OC \ (CH_2)_{16} \ CH_3 \\ \parallel \ \\ \end{array}$$

tristearato di glicerile

trilaurato di glicerile

glicerolo

laurato di sodio (un sapone)

fenilcisteina fenilalanina cisteina

40

TEST YOURSELF

C

A

B

B

VERSO L'UNIVERSITA

C

E

B

A

E

VERSO L'ESAME

ESEMPLIFICA

54 Sono anfifilici, per esempio, gli acidi biliari, che hanno la funzione biologica di emulsionare i grassi per formazione di micelle, i fosfolipidi e il colesterolo, che compongono le membrane cellulari.

OSSERVA E CLASSIFICA

55 Prima figura: acido grasso insaturo; seconda figura: acido grasso saturo.

OSSERVA E DESCRIVI

- 56 a. Globulare.
 - b. Alfa elica e beta foglietto (struttura rappresentata da frecce).
 - c. Sì, si individuano 4 polipeptidi evidenziati in colori diversi.

IPOTIZZA

- 57 a. Basicità.
 - b. Lisina, Istidina, Arginina.

OSSERVA E IPOTIZZA

- 58 a. La planarità.
 - **b.** Per la maggiore frequenza del processo di duplicazione.

CONFRONTA

- 59 Le differenze nella struttura quaternaria: la mioglobina è costituita da un unico polipeptide, mentre l'emoglobina presenta 4 subunità.
- 60 L'associazione di più polipeptidi in una struttura quaternaria è stabilizzata da legami deboli, mentre ubiquitina e proteina da degradare sono coinvolte in un legame covalente.