David Acheson 1089 e altri numeri magici

Un viaggio sorprendente nella matematica

Traduzione di Luisa Doplicher

Chiavi di lettura a cura di Federico Tibone e Lisa Vozza

indice

1 I - --- 1-1 1000

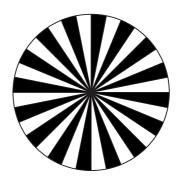
1.	La magia del 1089)
2.	Innamorarsi della geometria	13
3.	Ma è assurdo!	23
4.	Il guaio dell'algebra	31
5.	Cieli in movimento	41
6.	Tutto cambia	53
7.	Come essere il più piccoli possibile	61
8.	«Ci siamo quasi?»	73
9.	Una breve storia di π	81
10.	Good vibrations	91
11.	Grandi errori	101
12.	Qual è il segreto della vita?	111
13.	e = 2,718	121
14.	Caos e catastrofi	131
15.	Non proprio il trucco indiano della corda	143
16.	Reale o immaginario?	155
Rin	graziamenti	166
Per	saperne di più	167
Ind	ice analitico	171

Quando lo si incontra per la prima volta, il numero $\pi = 3,14159...$ è una faccenda di cerchi. In particolare per un cerchio di raggio r valgono le formule:

circonferenza = $2\pi r$

area = πr^2 .

La prima di queste formule esprime in sostanza il *significato* del numero π . Perché se accettiamo come «ovvio» il fatto che la lunghezza di una circonferenza sia proporzionale al suo diametro, allora il rapporto tra circonferenza e diametro sarà un numero ben preciso, lo stesso per tutti i cerchi. E quel numero è indicato dal simbolo π .



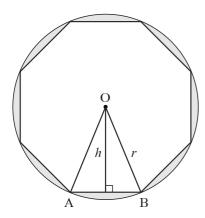
83

Per dirla in altro modo, definiamo π come quel particolare numero; e siccome il diametro di un cerchio è il doppio del raggio, cioè 2r, ne segue subito la formula circonferenza = $2\pi r$.

Ma per la seconda formula, $area = \pi r^2$, la faccenda è alquanto diversa. Nella definizione che abbiamo appena dato di π l'area non compariva affatto. Perciò qui abbiamo un risultato semplice ma tutt'altro che ovvio.

Perché allora vale quella seconda relazione?

Cominciamo inscrivendo nel cerchio un poligono con N lati uguali.



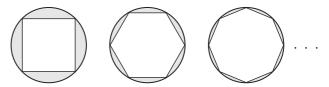
Bene: questo poligono consisterà di N triangoli come OAB nella figura, dove O è il centro del cerchio, e l'area di ognuno di questi triangoli sarà pari a $\frac{1}{2}$ della «base» \overline{AB} per l'«altezza» h.

L'area totale del poligono sarà N volte tanto, cioè $\frac{1}{2} \times \overline{AB} \times b \times N$.

Ma $\overline{AB} \times N$ è il perimetro del poligono, quindi:

area del poligono = $\frac{1}{2} \times (perimetro del poligono) \times h$.

Adesso guardate che cosa succede man mano che facciamo aumentare N, in modo che il poligono abbia un numero crescente di lati via via più corti, e quindi approssimi il cerchio sempre meglio:



Andando avanti in questo modo, il perimetro del poligono si avvicina sempre più alla circonferenza del cerchio, che vale $2\pi r$, e h si avvicina sempre più al raggio del cerchio, r.

Quindi l'area del poligono si avvicinerà sempre più a $\frac{1}{2} \times 2\pi r \times r$.

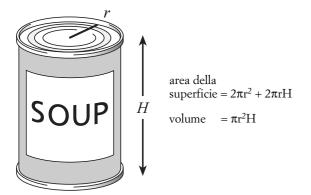
Ed è per questa ragione che l'area del cerchio è data da πr^2 .

Com'è facile intuire, le applicazioni pratiche di π abbondano.

Pensate per esempio a un barattolo cilindrico di raggio r e altezza H.

85

Non sorprenderà che π compaia nella formula per il volume e l'area della superficie:



E ne sorge un'ovvia domanda di economia: come possiamo realizzare un barattolo che abbia un dato volume *usando la minima quantità possibile di materiale*? In particolare, se vogliamo rendere minima l'area della superficie totale del barattolo, ci conviene farlo alto e sottile o invece basso e tozzo?

Si può affrontare questo problema con il metodo del calcolo infinitesimale descritto nel capitolo 7, e si scopre che per minimizzare l'area della superficie, se il volume è fissato, bisogna scegliere 2r = H, cioè fare in modo che il barattolo abbia un diametro pari alla sua altezza.

È interessante notare che le lattine di mais dolce in vendita al supermercato hanno proprio quella forma; le altre lattine – bibite, tonno, fagioli, minestre – invece no. Non ho ancora scoperto il motivo di questa differenza, e comunque π non è davvero una questione di lattine. In generale, non è nemmeno una questione di cerchi.

Il fatto è che π ha l'abitudine di fare capolino un po' ovunque in matematica, anche quando non ci sono cerchi in vista.

E per capire quale sia la vera natura di π , non è una cattiva idea dare un'occhiata ai vari tentativi che si sono fatti nel corso della storia per stabilirne il valore numerico preciso.

La stima di π più antica di cui abbiamo notizia è $\left(\frac{4}{3}\right)^4 = 3,16...$ e figura nel papiro di Rhind, che risale circa al 1650 a.C.

Ciononostante in gran parte del mondo antico si usava la rozza approssimazione $\pi=3$, che è anche quella che appare nel Vecchio Testamento:

Fece un bacino di metallo fuso di dieci cubiti da un orlo all'altro, rotondo; la sua altezza era di cinque cubiti e la sua circonferenza di trenta cubiti. (1 Re 7:23)

Il primo tentativo davvero sistematico di individuare con precisione il valore di π pare si debba ad Archimede: usando poligoni con novantasei lati, inscritti all'interno ma anche circoscritti all'esterno di un cerchio, il grande siracusano dimostrò che π deve essere maggiore di $(3 + \frac{10}{71})$ ma minore di $(3 + \frac{1}{7})$.

E secoli dopo questo limite superiore, ossia la frazione 22/7, appare spesso come approssimazione di π nei libri di testo elementari.

87

Nel 1593 Viète ottenne la prima formula esatta per π :

$$\frac{2}{\pi} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2+\sqrt{2}}}{2} \times \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \dots$$

e questo notevole prodotto infinito fu derivato, ancora una volta, studiando poligoni. Le radici quadrate rendono un po' macchinosa la formula, ma già all'epoca di Viète essa permise di calcolare π fino alla quattordicesima cifra decimale:

$$\pi = 3,14159\ 26535\ 8979\ ...$$

Le strategie per il calcolo di π cambiarono del tutto con la nascita del calcolo infinitesimale, a metà del Seicento. Una delle prime formule per π ricavate con i nuovi metodi fu un altro prodotto infinito:

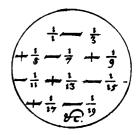
$$\frac{\pi}{2} = \frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \dots$$

ottenuto da John Wallis nel 1655. Diversamente dal risultato di Viète questo non contiene radici quadrate; inoltre si vede meglio che i fattori successivi si avvicinano sempre più a 1, ed è per questo che il prodotto infinito riesce a convergere a un valore finito.

Poco tempo dopo, nel 1674, Leibniz pubblicò la famosa serie infinita:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

che collega π ai numeri dispari; tuttavia ora si sa che i matematici indiani del Kerala l'avevano scoperta – in modo assai diverso – oltre centocinquant'anni prima.



Illustrazioni dall'articolo di Leibniz del 1674. La massima latina, ripresa dalle *Egloghe* di Virgilio, significa «Dio ama i numeri dispari».

Benché sia di una semplicità mozzafiato, la serie di Leibniz non è molto utile come metodo pratico per calcolare π , perché converge con lentezza.

Persino dopo trecento termini, per esempio, questa serie ci dà una stima di π meno accurata dell'approssimazione di Archimede, 22/7, ottenuta duemila anni prima!

Un'altra famosa serie infinita in cui π compare in modo del tutto inaspettato è questa:

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{6}$$

Eulero la ottenne nel 1736 con un ragionamento di fantastica temerarietà.

Leonhard Euler o Eulero (1707-1783)

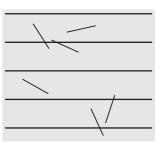
All'epoca di Eulero π era stato ormai determinato, facendo uso di serie infinite, fino a un centinaio di cifre decimali.

Ma nel 1761 Lambert dimostrò infine quello che si sospettava da tempo: π è *irrazionale*, perciò non se ne può dare un'espressione esatta come quoziente di due numeri interi. In particolare ciò implica che lo sviluppo decimale di π non può finire mai.

In ogni caso i computer moderni hanno permesso di determinare il valore di π fino a vari miliardi di cifre decimali. Se invece vi accontentate di una o due cifre decimali soltanto, potreste trovare più semplice e divertente un approccio di tipo *probabilistico* a π .

Prendete un foglio di carta a righe, con le righe separate da una distanza d, e lasciateci cadere sopra un ago, anch'esso lungo d.

La probabilità che l'ago si fermi a cavallo di una riga vale $2/\pi$.



Non avete aghi sottomano? Allora potreste invece provare a lanciare una moneta alcune volte (be', in realtà *un bel po'* di volte.)

Se lanciate una moneta 2n volte, con n molto grande, la probabilità di trovare esattamente n teste e n croci è data approssimativamente da $1/\sqrt{n\pi}$.

Niente monete in tasca? Allora potreste semplicemente chiedere a due amici di pensare molti numeri interi; infatti la probabilità che due qualsiasi interi positivi, presi a caso, non abbiamo fattori comuni (diversi da 1) è $6/\pi^2$.

Tutto questo sembra assai lontano dalla relazione da cui siamo partiti:

$$\pi = \frac{\text{circonferenza}}{\text{diametro}}.$$