Come si ricavano le formule dei composti

Nel XIX secolo i chimici avevano acquisito i dati fondamentali per arrivare a stabilire la formula di un composto. Infatti, attraverso l'analisi chimica era possibile determinare la composizione qualitativa e quantitativa di un composto, cioè era possibile determinare gli elementi presenti e la composizione percentuale con cui erano presenti nel composto; ma il passo decisivo per la determinazione delle formule fu la conoscenza della massa atomica (allora chiamata peso atomico), grazie anche al contributo fondamentale delle scoperte di Avogadro e di Cannizzaro.

Vediamo ora concretamente come si deve procedere proponendovi a titolo esemplificativo il percorso da seguire per determinare la formula dell'ossalato di sodio.

 Si determina sperimentalmente la percentuale in massa degli elementi che costituiscono il composto di cui si vuol trovare la formula. 	1. L'analisi dell'ossalato di sodio ha permesso di stabilire che questo composto è formato da sodio, carbonio e ossigeno: sodio carbonio ossigeno 34% 18% 48%
2. Si divide ogni percentuale per la massa atomica (arrotondata all'unità) dell'elemento al quale si riferisce.	2. sodio $\frac{34}{23} = 1.5$ carbonio $\frac{18}{12} = 1.5$ ossigeno $\frac{48}{16} = 3.0$
3. Si dividono i quozienti ottenuti al punto 2 per il più piccolo di essi: i risultati, arrotondati all'unità, costituiscono gli indici della cosiddetta <i>formula minima</i> . In questo caso gli indici sono numeri interi che, scritti in pedice a destra del simbolo, indicano il rapporto minimo tra gli atomi presenti nella molecola.	3. sodio $\frac{1,5}{1,5} = 1$ carbonio $\frac{1,5}{1,5} = 1$ ossigeno $\frac{3,0}{1,5} = 2$ Pertanto la formula minima del composto è NaCO ₂ .
4. Si determina sperimentalmente la massa molecolare del com- posto e si calcola la massa molecolare corrispondente alla formula minima: per fare questo è sufficiente sommare le masse atomiche di tutti gli atomi che compaiono nella for- mula.	4. La determinazione sperimentale della massa molecolare dell'ossalato di sodio ha dato il seguente risultato: MM = 134 u Calcoliamo la massa dell'aggregato atomico corrispondente alla formula minima: MM _{NaCO₂} = MA _{Na} + MA _C + 2 MA _O = 23 u + 12 u + 32 u = 67 u
5. A questo punto si divide la massa molecolare sperimentale dell'ossalato di sodio per quella che corrisponde alla formula minima e si ottiene un numero (che eventualmente va arrotondato all'unità); infine tutti gli indici della formula minima vanno moltiplicati per questo valore. Si ottengono così gli indici della formula del composto.	5. $\frac{MM_{composto}}{MM_{NaCO_2}} = \frac{134u}{67u} = 2$ Moltiplicando per 2 gli indici della formula minima otteniamo finalmente la formula dell'ossalato di sodio: $Na_2C_2O_4$