Acidi e basi: forti e deboli

Sappiamo che gli acidi hanno una caratteristica che li accomuna (in soluzione acquosa forniscono ioni H^+), ma hanno anche una proprietà che li differenzia, cioè la «forza». Essa misura la capacità della molecola dell'acido di liberare più o meno facilmente lo ione H^+ ; ne consegue che, a parità di concentrazione molare, un acido forte libera più ioni H^+ di un acido debole e, quindi, il pH della sua soluzione è minore.

Attraverso opportune misure è possibile attribuire un valore alla forza di un acido e, quindi, si può costruire una tabella in cui gli acidi sono incolonnati in ordine di forza decrescente (tabella >1). I primi sei acidi presenti nella tabella sono molto forti, si dice anche che in acqua si ionizzano in modo completo. Nella tabella sono presenti anche specie ioniche che si comportano da acido.

▼ Tabella 1

Acido	Formula		
acido perclorico	HClO ₄		
acido iodidrico	HI		
acido bromidrico	HBr		
acido cloridrico	HCl		
acido solforico	H ₂ SO ₄		
acido nitrico	HNO ₃		
acido iodico	HIO ₃		
acido ossalico	$H_2C_2O_4$		
acido solforoso	H_2SO_3		
ione idrogenosolfato	HSO ₄	· <u>-</u>	
acido fosforico	H_3PO_4	degli acidi	
acido d-tartarico	$H_2C_4H_4O_6$	li a	
acido lattico	$HC_3H_5O_3$	deg	
acido citrico	$H_3C_6H_5O_7$	te	
acido nitroso	HNO ₂	forza crescente	
acido fluoridrico	HF	res	
acido formico	НСООН	ас	
acido l-ascorbico	$H_2C_6H_6O_6$	orz	
acido benzoico	C ₆ H ₅ COOH	4	
acido acetico	CH₃COOH		
acido carbonico	H_2CO_3		
ione idrogenosolfito	HSO ₃		
acido solfidrico	H ₂ S		
ione diidrogenofosfato	$H_2PO_4^-$		
acido ipocloroso	HClO		
acido borico	H_3BO_3		
acido cianidrico	HCN		
ione idrogenocarbonato	HCO ₃		
ione idrogenosolfuro	HS-		
ione idrogenofosfato	HPO ₄ ²⁻		

Tabella

Considerazioni del tutto analoghe si possono fare per le basi. In questo caso possiamo dire che, a parità di concentrazione molare, la soluzione di una base forte ha un pH maggiore di quella di una base più debole, perché la base forte libera un numero maggiore di ioni OH⁻. Gli idrossidi dei metalli alcalini e dei metalli alcalino terrosi, per esempio NaOH e Ca(OH)₂, sono le basi più forti, poiché, essendo composti ionici, liberano direttamente lo ione OH⁻ quando si sciolgono in acqua. Nella tabella ▶2 sono elencati i nomi di alcune basi deboli in ordine di forza decrescente.

_	T -	L - I		•
•	ıa	bel	II A	

Base	Formula		
dietilammina	$(C_2H_5)_2NH$		
etilammina	C ₂ H ₅ NH ₂		
dimetilammina	(CH ₃) ₂ NH		
metilammina	CH ₃ NH ₂	bas	
trimetilammina	$(CH_3)_3N$	alle Sille	
ammoniaca	NH ₃	e de	
idrazina	NH ₂ NH ₂	crescente delle	
morfina	C ₁₇ H ₁₉ O ₃ N	resc	
nicotina	C ₁₀ H ₁₄ N ₂	ت ت	
ossidrilammina	NH ₂ OH	forza	
piridina	C ₅ H ₅ N		
anilina	C ₆ H ₅ NH ₂		
urea	CO(NH ₂) ₂		