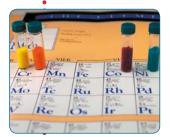
Sommario

Introduzione La Chimica e il metodo scientifico

1.	La Chimica	pag. 9
2.	Il metodo scientifico	pag. 10
3.	Grandezze fondamentali e grandezze derivate	pag. 11
	3.1 Il Sistema Internazionale di unità di misura (SI)	pag. 11
	3.2 Grandezze intensive ed estensive	pag. 13


Capitolo 1 La struttura della materia: miscugli e sostanze

1.	Materia e corpi	pag. 14
2.	Le sostanze e i miscugli	pag. 14
	2.1 Sostanze pure e miscugli	pag. 15
	2.2 Miscugli omogenei e miscugli eterogenei	pag. 16
3.	Gli stati fisici di aggregazione della materia	pag. 17
4.	I passaggi di stato	pag. 18
5 .	I metodi di separazione dei miscugli	pag. 20
	5.1 Filtrazione	pag. 21
	5.2 Decantazione	pag. 22
	5.3 Centrifugazione	pag. 23
	5.4 Estrazione	pag. 24
	5.5 Cromatografia	pag. 24
	5.6 Distillazione	pag. 26
ESE	RCIZI di autoverifica	pagg. 28-31

Capitolo 2 Dalle sostanze all'atomo

1.	Elementi e composti	pag. 32
	1.1 Gli elementi	pag. 32
	1.2 I composti	pag. 35
2.	La teoria atomica di Dalton e le leggi ponderali	pag. 36
	2.1 Dall'antica Grecia al XIX secolo: da Democrito a Dalton	pag. 36
	2.2 Le leggi ponderali	pag. 36
3.	L'atomo: protoni, neutroni ed elettroni	pag. 39
4.	Gli elementi chimici e il numero atomico	pag. 39
5 .	Numero di massa e isotopi	pag. 40
6.	Massa atomica relativa e unità di massa atomica	pag. 41
	6.1 La massa molecolare	pag. 43
7.	Disposizione degli elettroni intorno al nucleo: gli orbitali	pag. 43
	7.1 Livelli energetici e sottolivelli	pag. 44
	7.2 Configurazione elettronica ed elettroni di valenza	pag. 44
	7.3 I numeri quantici e la configurazione elettronica	pag. 45
	7.4 La configurazione elettronica in pratica	pag. 48
8.	Gli ioni e la configurazione elettronica	pag. 51
ESE	ERCIZI di autoverifica	pagg. 52-56

Capitolo 3 La tavola periodica degli elementi

1. La tavola periodica di Mendeleev	pag. 57
2. La tavola periodica attuale	pag. 58
3. Metalli e non metalli	pag. 62
4. Proprietà periodiche degli elementi	pag. 63
4.1 Raggio atomico	pag. 63
4.2 Energia di ionizzazione	pag. 65
4.3 Affinità elettronica	pag. 66
4.4 Elettronegatività	pag. 67
ESERCIZI di autoverifica	pagg. 68-7

Capitolo 4 I legami chimici

1.	Dagli atomi alle molecole: i legami chimici	pag. 72
2.	La regola dell'ottetto	pag. 74
3.	Gli ioni e il legame ionico	pag. 74
4.	I legami covalenti	pag. 76
	4.1 Il legame covalente polare	pag. 77
	4.2 Legami covalenti multipli	pag. 78
5.	La valenza	pag. 79
6.	Il legame dativo	pag. 80
7.	Il legame metallico	pag. 80
8.	La forma delle molecole: la teoria VSEPR	pag. 82
9.	Gli orbitali molecolari sigma (σ) e pi greco (π)	pag. 84
10.	Orbitali ibridi	pag. 87
	10.1 Ibridazione <i>sp</i> ³	pag. 87
	10.2 Ibridazione <i>sp</i> ²	pag. 88
	10.3 Ibridazione <i>sp</i>	pag. 89
11.	Le forze intermolecolari: legami tra molecole	pag. 90
	11.1 Le forze di London	pag. 90
	11.2 Attrazioni dipolo-dipolo	pag. 91
	11.3 Legame a idrogeno	pag. 91
ESE	ERCIZI di autoverifica	pagg. 93-96

Capitolo 5 Dalle leggi dei gas alla mole

1.	Igas	pag.	97
	1.1 Il modello del gas ideale	pag.	98
2.	Le leggi dei gas	pag.	99
	2.1 La legge di Boyle	pag.	99
	2.2 La legge di Charles (o I legge di Gay-Lussac)	pag.	100
	2.3 La legge di Gay-Lussac (o II legge di Gay-Lussac)	pag.	101
	2.4 La legge dei gas ideali	pag.	101
3.	Le leggi dei gas in pratica	pag.	103
	3.1 La legge di Boyle in pratica	pag.	103
	3.2 La legge di Charles in pratica	pag.	104
	3.3 La legge di Gay-Lussac in pratica	pag.	105

Sommario

4.	Dai volumi dei gas alle masse relative degli atomi	
	e delle molecole	pag. 106
	4.1 Il principio di Avogadro	pag. 106
	4.2 Dalla legge di Avogadro alla massa atomica relativa	pag. 107
5.	Dalla massa molecolare alla mole	pag. 108
	5.1 La massa molare	pag. 109
	5.2 Il volume molare	pag. 111
6.	Equazione generale dei gas ideali	pag. 112
	6.1 Calcoli con l'equazione generale dei gas ideali	pag. 112
7.	Equazioni chimiche e moli	pag. 113
ESE	ERCIZI di autoverifica	pagg. 114-117

Capitolo 6 Lo stato liquido e le soluzioni

Т.	Dailo stato gassoso agli stati condensati	pag. 116
2.	Lo stato liquido	pag. 119
	2.1 L'evaporazione	pag. 120
	2.2 La tensione di vapore	pag. 120
	2.3 L'ebollizione	pag. 121
3.	Le soluzioni	pag. 123
	3.1 Concentrazione delle soluzioni	pag. 124
4.	Solubilità e soluzioni sature	pag. 125
5 .	Soluzioni acquose ed elettroliti	pag. 127
6.	Le proprietà colligative delle soluzioni	pag. 128
	6.1 Abbassamento della tensione di vapore	pag. 129
	6.2 Innalzamento ebullioscopico e abbassamento crioscopico	pag. 130
	6.3 Pressione osmotica	pag. 131
ESE	ERCIZI di autoverifica	pagg. 133-138

Capitolo Nomenclatura dei composti inorganici

1.	Dagli elementi ai composti	pag. 139
2.	Classificazione dei composti inorganici	pag. 140
3.	Un nome e una formula: la nomenclatura	pag. 141
	3.1 La valenza	pag. 141
	3.2 Il numero di ossidazione	pag. 144
4.	La nomenclatura dei composti inorganici	pag. 146
	4.1 I composti binari	pag. 147
	4.2 I composti ternari	pag. 150
5 .	Minerali e rocce	pag. 155
ESE	RCIZI di autoverifica	pagg, 157-160

Capitolo 8 Le reazioni chimiche

1. Le reazioni chimiche: reagenti e prodotti	pag. 161
2. Il principio di conservazione della massa	pag. 162
3. Equazioni chimiche e loro bilanciamento	pag. 163
3.1 Regole nel bilanciamento delle equazioni chimiche	pag. 164

4. Tipi di reazioni chimich	ne	pag. 165
4.1 Reazioni di sintesi: A	$A + B \rightarrow AB$	pag. 166
4.2 Reazioni di decompe	osizione: AB → A + B	pag. 166
4.3 Reazioni di scambio	o di spostamento (o di sostituzione):	
$A + BC \rightarrow AC + B$		pag. 168
4.4 Reazioni di doppio s	scambio: AB + CD → AD + CB	pag. 169
4.5 Reazioni reversibili		pag. 171
4.6 Reazioni di particola	re interesse	pag. 171
5. Reazioni di ossido-ridu	ızione	pag. 172
5.1 Le semireazioni di o	ssidazione e riduzione	pag. 172
5.2 II bilanciamento delle	e reazioni di ossido-riduzione	pag. 173
6. L'elettrochimica		pag. 176
6.1 La pila		pag. 176
6.2 L'elettrolisi		pag. 179
7. Energia e reazioni chin	niche	pag. 180
7.1 La teoria delle collis	ioni o degli urti efficaci	pag. 180
7.2 Reazioni esotermich	ne e reazioni endotermiche	pag. 182
ESERCIZI di autoverifica		pagg. 184-187

1. La velocità delle reazioni chimiche	pag. 188
2. Fattori che influenzano la velocità di reazione	pag. 189
3. Reazioni reversibili ed equilibrio chimico	pag. 191
3.1 Il principio dell'equilibrio mobile o di Le Châtelier	pag. 193
ESERCIZI di autoverifica	pagg. 197-200

Capitolo 10 Acidi e basi: il pH

1. Acidi e basi	pag. 201
1.1 Acidi e basi secondo Arrhenius	pag. 202
1.2 Acidi e basi secondo Brönsted e Lowry	pag. 203
1.3 Acidi e basi secondo Lewis	pag. 205
2. Ionizzazione dell'acqua	pag. 206
3. Misura del grado di acidità: la scala del pH	pag. 207
4. La forza degli acidi e delle basi	pag. 210
4.1 Forza degli acidi e costante di dissociazione acida	pag. 212
5. Misurazione del pH: gli indicatori	pag. 214
6. Le reazioni di neutralizzazione	pag. 215
SERCIZI di autoverifica	pagg, 217-220

Capitolo 111 Gli alimenti e la loro composizione

1.	Gli alimenti e la loro composizione	pag. 221
	1.1 I principi nutritivi	pag. 221
2.	Calorie per vivere	pag. 223
	2.1 Metabolismo basale	pag. 223
	2.2 Fabbisogno energetico totale	pag. 223
3.	Alimentazione equilibrata	pag. 223
4.	I composti organici nell'alimentazione	pag. 225

Sommario

5.	Gli zuccheri o glucidi	pag. 226
	5.1 Monosaccaridi	pag. 226
	5.2 Disaccaridi	pag. 227
	5.3 Polisaccaridi	pag. 228
	5.4 I carboidrati nell'alimentazione	pag. 229
6.	I lipidi o grassi	pag. 230
	6.1 I trigliceridi	pag. 230
	6.2 Grassi saturi e grassi insaturi	pag. 231
	6.3 Fosfolipidi e glicolipidi	pag. 232
	6.4 Il colesterolo e gli steroidi	pag. 232
7.	Le proteine	pag. 234
	7.1 La struttura delle proteine	pag. 235
	7.2 Proteine e nutrizione	pag. 236
8.	Sali minerali	pag. 237
9.	Vitamine	pag. 238
10.	Acqua	pag. 238
ESE	ERCIZI di autoverifica	pagg. 239-242

Capitolo 12 La conservazione degli alimenti

1. Fattori che ostacolano la conservazione	pag. 243
1.1 Agenti biologici	pag. 243
1.2 Agenti fisico-chimici	pag. 244
2. Classificazione dei metodi di conservazione	pag. 244
3. Metodi fisici di conservazione	pag. 246
3.1 Conservazione mediante calore	pag. 246
3.2 Sottrazione di acqua	pag. 248
3.3 Conservazione con il freddo	pag. 249
3.4 Radiazioni	pag. 255
3.5 Microonde	pag. 255
4. Metodi chimici di conservazione	pag. 256
4.1 Metodi tradizionali	pag. 256
4.2 Additivi consentiti a scopo conservativo	pag. 258
4.3 Metodi chimici di conservazione: altri additivi	pag. 260
5. Metodi biologici di conservazione	pag. 262
ESERCIZI di autoverifica	pagg. 263-266

Capitolo 13 La cottura degli alimenti

1. La cottura: definizione e finalità	pag. 267
1.1 Principi nutritivi e microrganismi patogeni	pag. 269
2. Le trasformazioni dell'alimento durante la cottura	pag. 269
2.1 Acqua, amidi e zuccheri semplici	pag. 269
2.2 Proteine, vitamine e minerali	pag. 271
2.3 Grassi	pag. 272
3. I metodi di cottura	pag. 273
3.1 Differenze nei metodi di cottura	pag. 273
ESERCIZI di autoverifica	pagg. 281-285
Indice analitico	pag. 286
Indice dei materiali digitali	pag. 294
Tavola periodica degli elementi	nag 296