Sommario

Introduzione La Chimica e il metodo scientifico 1. La Chimica pag. 9 2. Il metodo scientifico pag. 10 3. Grandezze fondamentali e grandezze derivate pag. 11 3.1 Il Sistema Internazionale di unità di misura (SI) pag. 11 3.2 Grandezze intensive ed estensive pag. 13 Capitolo La struttura della materia: miscugli e sostanze 1. Materia e corpi pag. 14 2. Le sostanze e i miscugli pag. 14 2.1 Sostanze pure e miscugli pag. 15 2.2 Miscugli omogenei e miscugli eterogenei pag. 16

3. Gli stati fisici di aggregazione della materia pag. 17 4. I passaggi di stato pag. 18 5. I metodi di separazione dei miscugli pag. 20 5.1 Filtrazione pag. 21 5.2 Decantazione pag. 22 5.3 Centrifugazione pag. 23 5.4 Estrazione pag. 24 5.5 Cromatografia pag. 24 5.6 Distillazione pag. 26 ESERCIZI di autoverifica pagg. 28-31

1.	Elementi e composti	pag. 32
	1.1 Gli elementi	pag. 32
	1.2 I composti	pag. 35
2.	La teoria atomica di Dalton e le leggi ponderali	pag. 36
	2.1 Dall'antica Grecia al XIX secolo: da Democrito a Dalton	pag. 36
	2.2 Le leggi ponderali	pag. 36
3.	L'atomo: protoni, neutroni ed elettroni	pag. 39
4.	Gli elementi chimici e il numero atomico	pag. 39
5.	Numero di massa e isotopi	pag. 40
6.	Massa atomica relativa e unità di massa atomica	pag. 41
	6.1 La massa molecolare	pag. 43
7.	Disposizione degli elettroni intorno al nucleo: gli orbitali	pag. 43
	7.1 Livelli energetici e sottolivelli	pag. 44
	7.2 Configurazione elettronica ed elettroni di valenza	pag. 44
	7.3 I numeri quantici e la configurazione elettronica	pag. 45
	7.4 La configurazione elettronica in pratica	pag. 48
8.	Gli ioni e la configurazione elettronica	pag. 51
ESE	ERCIZI di autoverifica	pagg. 52-56

Sommario

Capitolo 3 La tavola periodica degli elementi

1. La tavola periodica di Mendeleev	pag. 57
2. La tavola periodica attuale	pag. 58
3. Metalli e non metalli	pag. 62
4. Proprietà periodiche degli elementi	pag. 63
4.1 Raggio atomico	pag. 63
4.2 Energia di ionizzazione	pag. 65
4.3 Affinità elettronica	pag. 66
4.4 Elettronegatività	pag. 67
ESERCIZI di autoverifica	pagg. 68-71

Capitolo 4 I legami chimici

1.	Dagli atomi alle molecole: i legami chimici	pag. 72
2.	La regola dell'ottetto	pag. 74
3.	Gli ioni e il legame ionico	pag. 74
4.	I legami covalenti	pag. 76
	4.1 Il legame covalente polare	pag. 77
	4.2 Legami covalenti multipli	pag. 78
5 .	La valenza	pag. 79
6.	Il legame dativo	pag. 80
7.	Il legame metallico	pag. 80
8.	La forma delle molecole: la teoria VSEPR	pag. 82
9.	Gli orbitali molecolari sigma (σ) e pi greco (π)	pag. 84
10.	Orbitali ibridi	pag. 87
	10.1 Ibridazione <i>sp</i> ³	pag. 87
	10.2 Ibridazione <i>sp</i> ²	pag. 88
	10.3 Ibridazione <i>sp</i>	pag. 89
11.	Le forze intermolecolari: legami tra molecole	pag. 90
	11.1 Le forze di London	pag. 90
	11.2 Attrazioni dipolo-dipolo	pag. 91
	11.3 Legame a idrogeno	pag. 91
ESE	ERCIZI di autoverifica	pagg. 93-96

Capitolo 5 Dalle leggi dei gas alla mole

1.	I gas	pag. 97
	1.1 Il modello del gas ideale	pag. 98
2.	Le leggi dei gas	pag. 99
	2.1 La legge di Boyle	pag. 99
	2.2 La legge di Charles (o I legge di Gay-Lussac)	pag. 100
	2.3 La legge di Gay-Lussac (o II legge di Gay-Lussac)	pag. 101
	2.4 La legge dei gas ideali	pag. 101
3.	Le leggi dei gas in pratica	pag. 103
	3.1 La legge di Boyle in pratica	pag. 103
	3.2 La legge di Charles in pratica	pag. 104
	3.3 La legge di Gay-Lussac in pratica	pag. 105
4.	Dai volumi dei gas alle masse relative degli atomi	
	e delle molecole	pag. 106

4.1 Il principio di Avogadro	pag. 106
4.2 Dalla legge di Avogadro alla massa atomica relativa	pag. 107
5. Dalla massa molecolare alla mole	pag. 108
5.1 La massa molare	pag. 109
5.2 Il volume molare	pag. 111
6. Equazione generale dei gas ideali	pag. 112
6.1 Calcoli con l'equazione generale dei gas ideali	pag. 112
7. Equazioni chimiche e moli	pag. 113
ESERCIZI di autoverifica	pagg. 114-117

Capitolo 6 Lo stato liquido e le soluzioni

1.	Dallo stato gassoso agli stati condensati	pag. 118
2.	Lo stato liquido	pag. 119
	2.1 L'evaporazione	pag. 120
	2.2 La tensione di vapore	pag. 120
	2.3 L'ebollizione	pag. 121
3.	Le soluzioni	pag. 123
	3.1 Concentrazione delle soluzioni	pag. 124
4.	Solubilità e soluzioni sature	pag. 125
5.	Soluzioni acquose ed elettroliti	pag. 127
6.	Le proprietà colligative delle soluzioni	pag. 128
	6.1 Abbassamento della tensione di vapore	pag. 129
	6.2 Innalzamento ebullioscopico e abbassamento crioscopico	pag. 130
	6.3 Pressione osmotica	pag. 131
ESE	ERCIZI di autoverifica	pagg. 133-138

Capitolo Nomenclatura dei composti inorganici

1.	Dagli elementi ai composti	pag. 139
2.	Classificazione dei composti inorganici	pag. 140
3.	Un nome e una formula: la nomenclatura	pag. 141
	3.1 La valenza	pag. 141
	3.2 Il numero di ossidazione	pag. 144
4.	La nomenclatura dei composti inorganici	pag. 146
	4.1 I composti binari	pag. 147
	4.2 I composti ternari	pag. 150
5 .	Minerali e rocce	pag. 155
ESE	RCIZI di autoverifica	pagg. 157-160

Capitolo 8 Le reazioni chimiche

1.	Le reazioni chimiche: reagenti e prodotti	pag. 161
	Il principio di conservazione della massa	pag. 162
	Equazioni chimiche e loro bilanciamento	pag. 163
	3.1 Regole nel bilanciamento delle equazioni chimiche	pag. 164
4.	Tipi di reazioni chimiche	pag. 165
	4.1 Reazioni di sintesi: A + B → AB	pag. 166
	4.2 Reazioni di decomposizione: AB → A + B	pag. 166

Sommario

4.3 Reazioni di scambio o di spostamento (o di sostituzio	one):
A + BC → AC + B	pag. 168
4.4 Reazioni di doppio scambio: AB + CD → AD + CB	pag. 169
4.5 Reazioni reversibili	pag. 171
4.6 Reazioni di particolare interesse	pag. 171
5. Reazioni di ossido-riduzione	pag. 172
5.1 Le semireazioni di ossidazione e riduzione	pag. 172
5.2 Il bilanciamento delle reazioni di ossido-riduzione	pag. 173
6. L'elettrochimica	pag. 176
6.1 La pila	pag. 176
6.2 L'elettrolisi	pag. 179
7. Energia e reazioni chimiche	pag. 180
7.1 La teoria delle collisioni o degli urti efficaci	pag. 180
7.2 Reazioni esotermiche e reazioni endotermiche	pag. 182
ESERCIZI di autoverifica	pagg. 184-187
	• • • • • • • • • • • • • • • • • • • •
Capitolo 9 Velocità ed equilibrio delle reazioni chim	niche

1. La velocità delle reazioni chimiche	pag. 188
2. Fattori che influenzano la velocità di reazione	pag. 189
3. Reazioni reversibili ed equilibrio chimico	pag. 191
3.1 Il principio dell'equilibrio mobile o di Le Châtelier	pag. 193
ESERCIZI di autoverifica	pagg. 197-200

Capitolo 10 Acidi e basi: il pH 1. Acidi e basi

1. Acidi e basi	pag. 201
1.1 Acidi e basi secondo Arrhenius	pag. 202
1.2 Acidi e basi secondo Brönsted e Lowry	pag. 203
1.3 Acidi e basi secondo Lewis	pag. 205
2. Ionizzazione dell'acqua	pag. 206
3. Misura del grado di acidità: la scala del pH	pag. 207
4. La forza degli acidi e delle basi	pag. 210
4.1 Forza degli acidi e costante di dissociazione acida	pag. 212
5. Misurazione del pH: gli indicatori	pag. 214
6. Le reazioni di neutralizzazione	pag. 215
ESERCIZI di autoverifica	pagg. 217-220

Capitolo 111 La Chimica organica

1. I composti organici	pag. 221
1.1 Composti inorganici e organici del carbonio	pag. 223
2. Gli idrocarburi	pag. 225
2.1 Idrocarburi alifatici	pag. 227
2.2 Idrocarburi aromatici	pag. 231
3. I gruppi funzionali e i derivati degli idrocarburi	pag. 233
4. Polimeri naturali e sintetici	pag. 250
4.1 Polimeri sintetici	pag. 250
ESERCIZI di autoverifica	pagg. 253-257
ndice analitico	pag. 258
Tavola periodica degli elementi	pag. 264