Sommario

Introduzione La Chimica e il metodo scientifico

1.	La Chimica	pag. 9
2.	Il metodo scientifico	pag. 10
3.	Grandezze fondamentali e grandezze derivate	pag. 11
	3.1 Il Sistema Internazionale di unità di misura (SI)	pag. 11
	3.2 Grandezze intensive ed estensive	pag. 13

Capitolo 1 La struttura della materia: miscugli e sostanze

1. Materia e corpi	pag. 14
2. Le sostanze e i miscugli	pag. 14
2.1 Sostanze pure e miscugli	pag. 15
2.2 Miscugli omogenei e miscugli eterogenei	pag. 16
3. Gli stati fisici di aggregazione della materia	pag. 17
4. I passaggi di stato	pag. 18
5. I metodi di separazione dei miscugli	pag. 20
5.1 Filtrazione	pag. 21
5.2 Decantazione	pag. 22
5.3 Centrifugazione	pag. 23
5.4 Estrazione	pag. 24
5.5 Cromatografia	pag. 24
5.6 Distillazione	pag. 26
ESERCIZI di autoverifica	pagg, 28-31

Capitolo 2 Dalle sostanze all'atomo

1.	Elementi e composti	pag. 32
	1.1 Gli elementi	pag. 32
	1.2 I composti	pag. 35
2.	La teoria atomica di Dalton e le leggi ponderali	pag. 36
	2.1 Dall'antica Grecia al XIX secolo: da Democrito a Dalton	pag. 36
	2.2 Le leggi ponderali	pag. 36
3.	L'atomo: protoni, neutroni ed elettroni	pag. 39
4.	Gli elementi chimici e il numero atomico	pag. 39
5.	Numero di massa e isotopi	pag. 40
6.	Massa atomica relativa e unità di massa atomica	pag. 41
	6.1 La massa molecolare	pag. 43
7.	Disposizione degli elettroni intorno al nucleo: gli orbitali	pag. 43
	7.1 Livelli energetici e sottolivelli	pag. 44
	7.2 Configurazione elettronica ed elettroni di valenza	pag. 44
	7.3 I numeri quantici e la configurazione elettronica	pag. 45
	7.4 La configurazione elettronica in pratica	pag. 48
8.	Gli ioni e la configurazione elettronica	pag. 51
ESE	ERCIZI di autoverifica	pagg. 52-56

Capitolo 3 La tavola periodica degli elementi

1. La tavola periodica di Mendeleev	pag. 57
2. La tavola periodica attuale	pag. 58
3. Metalli e non metalli	pag. 62
4. Proprietà periodiche degli elemen	ti pag. 63
4.1 Raggio atomico	pag. 63
4.2 Energia di ionizzazione	pag. 65
4.3 Affinità elettronica	pag. 66
4.4 Elettronegatività	pag. 67
SERCIZI di autoverifica	pagg. 68-7

Capitolo 4 I legami chimici

1.	Dagli atomi alle molecole: i legami chimici	pag. 72
2.	La regola dell'ottetto	pag. 74
3.	Gli ioni e il legame ionico	pag. 74
4.	I legami covalenti	pag. 76
	4.1 Il legame covalente polare	pag. 77
	4.2 Legami covalenti multipli	pag. 78
5.	La valenza	pag. 79
6.	Il legame dativo	pag. 80
7.	Il legame metallico	pag. 80
8.	La forma delle molecole: la teoria VSEPR	pag. 82
9.	Gli orbitali molecolari sigma (σ) e pi greco (π)	pag. 84
10.	Orbitali ibridi	pag. 87
	10.1 Ibridazione <i>sp</i> ³	pag. 87
	10.2 Ibridazione <i>sp</i> ²	pag. 88
	10.3 Ibridazione <i>sp</i>	pag. 89
11.	Le forze intermolecolari: legami tra molecole	pag. 90
	11.1 Le forze di London	pag. 90
	11.2 Attrazioni dipolo-dipolo	pag. 91
	11.3 Legame a idrogeno	pag. 91
ESE	ERCIZI di autoverifica	pagg. 93-96

Capitolo 5 Dalle leggi dei gas alla mole

1.	I gas	pag.	97
	1.1 Il modello del gas ideale	pag.	98
2.	Le leggi dei gas	pag.	99
	2.1 La legge di Boyle	pag.	99
	2.2 La legge di Charles (o I legge di Gay-Lussac)	pag.	100
	2.3 La legge di Gay-Lussac (o II legge di Gay-Lussac)	pag.	101
	2.4 La legge dei gas ideali	pag.	101
3.	Le leggi dei gas in pratica	pag.	103
	3.1 La legge di Boyle in pratica	pag.	103
	3.2 La legge di Charles in pratica	pag.	104
	3.3 La legge di Gay-Lussac in pratica	pag.	105

Sommario

4.	Dai volumi dei gas alle masse relative degli atomi	
	e delle molecole	pag. 106
	4.1 Il principio di Avogadro	pag. 106
	4.2 Dalla legge di Avogadro alla massa atomica relativa	pag. 107
5.	Dalla massa molecolare alla mole	pag. 108
	5.1 La massa molare	pag. 109
	5.2 Il volume molare	pag. 111
6.	Equazione generale dei gas ideali	pag. 112
	6.1 Calcoli con l'equazione generale dei gas ideali	pag. 112
7.	Equazioni chimiche e moli	pag. 113
ESE	ERCIZI di autoverifica	pagg. 114-117

Capitolo 6 Lo stato liquido e le soluzioni

1.	Dallo stato gassoso agli stati condensati	pag. 118
2.	Lo stato liquido	pag. 119
	2.1 L'evaporazione	pag. 120
	2.2 La tensione di vapore	pag. 120
	2.3 L'ebollizione	pag. 121
3.	Le soluzioni	pag. 123
	3.1 Concentrazione delle soluzioni	pag. 124
4.	Solubilità e soluzioni sature	pag. 125
5 .	Soluzioni acquose ed elettroliti	pag. 127
6.	Le proprietà colligative delle soluzioni	pag. 128
	6.1 Abbassamento della tensione di vapore	pag. 129
	6.2 Innalzamento ebullioscopico e abbassamento crioscopico	pag. 130
	6.3 Pressione osmotica	pag. 131
SF	RCIZI di autoverifica	pagg 133-138

Capitolo Nomenclatura dei composti inorganici

1.	Dagli elementi ai composti	pag. 139
2.	Classificazione dei composti inorganici	pag. 140
3.	Un nome e una formula: la nomenclatura	pag. 141
	3.1 La valenza	pag. 141
	3.2 Il numero di ossidazione	pag. 144
4.	La nomenclatura dei composti inorganici	pag. 146
	4.1 I composti binari	pag. 147
	4.2 I composti ternari	pag. 150
5 .	Minerali e rocce	pag. 155
ESE	ERCIZI di autoverifica	pagg, 157-160

Capitolo 8 Le reazioni chimiche

1.	Le reazioni chimiche: reagenti e prodotti	pag. 161
2.	Il principio di conservazione della massa	pag. 162
3.	Equazioni chimiche e loro bilanciamento	pag. 163
	3.1 Regole nel bilanciamento delle equazioni chimiche	pag. 164
4.	Tipi di reazioni chimiche	pag. 165
	4.1 Reazioni di sintesi: A + B → AB	pag. 166

4.2 Reazioni di decomposizione: AB → A + B	pag. 166
4.3 Reazioni di scambio o di spostamento (o di sostituzio	ne):
$A + BC \rightarrow AC + B$	pag. 168
4.4 Reazioni di doppio scambio: AB + CD → AD + CB	pag. 169
4.5 Reazioni reversibili	pag. 171
4.6 Reazioni di particolare interesse	pag. 171
5. Reazioni di ossido-riduzione	pag. 172
5.1 Le semireazioni di ossidazione e riduzione	pag. 172
5.2 Il bilanciamento delle reazioni di ossido-riduzione	pag. 173
6. L'elettrochimica	pag. 176
6.1 La pila	pag. 176
6.2 L'elettrolisi	pag. 179
7. Energia e reazioni chimiche	pag. 180
7.1 La teoria delle collisioni o degli urti efficaci	pag. 180
7.2 Reazioni esotermiche e reazioni endotermiche	pag. 182
ESERCIZI di autoverifica	pagg. 184-187

1. La velocità delle reazioni chimiche	pag. 188
2. Fattori che influenzano la velocità di reazione	pag. 189
3. Reazioni reversibili ed equilibrio chimico	pag. 191
3.1 Il principio dell'equilibrio mobile o di Le Châtelier	pag. 193
ESERCIZI di autoverifica	pagg. 197-200

Capitolo 10 Acidi e basi: il pH

1. Acidi e basi	pag. 201
1.1 Acidi e basi secondo Arrhenius	pag. 202
1.2 Acidi e basi secondo Brönsted e Lowry	pag. 203
1.3 Acidi e basi secondo Lewis	pag. 205
2. Ionizzazione dell'acqua	pag. 206
3. Misura del grado di acidità: la scala del pH	pag. 207
4. La forza degli acidi e delle basi	pag. 210
4.1 Forza degli acidi e costante di dissociazione acida	pag. 212
5. Misurazione del pH: gli indicatori	pag. 214
6. Le reazioni di neutralizzazione	pag. 215
ESERCIZI di autoverifica	pagg. 217-220

Capitolo 111 La Chimica organica

1.1 Composti inorganici e organici del carbonio pag. 222 2. Gli idrocarburi pag. 223 2.1 Idrocarburi alifatici pag. 225 2.2 Idrocarburi aromatici pag. 228	
2.1 Idrocarburi alifatici pag. 225	
, •	
2.2. Idrocarburi aromatici nad 228	
2.2 Tarobarbari aromation pag. 220	
3. I gruppi funzionali e i derivati degli idrocarburi pag. 230	
4. Polimeri naturali e sintetici pag. 240	
4.1 Polimeri sintetici pag. 240	
SERCIZI di autoverifica pagg. 242-2	46

Sommario

Capitolo 12 Materiali inorganici in Odontotecnica

1.	Il gesso e il suo impiego in Odontotecnica	pag. 247
	1.1 La composizione chimica del gesso	pag. 248
	1.2 I tipi di gessi dentali	pag. 249
	1.3 La reazione di presa	pag. 249
	1.4 Il rapporto acqua/polvere	pag. 250
	1.5 L'espansione di presa	pag. 250
2.	La silice e il suo impiego in Odontotecnica	pag. 251
	2.1 Le caratteristiche chimico-fisiche della silice	pag. 252
	2.2 La composizione dei materiali da rivestimento	pag. 254
3.	La ceramica e il suo impiego in Odontotecnica	pag. 257
	3.1 La composizione chimica della ceramica	pag. 257
	3.2 Le proprietà chimiche, fisiche, ottiche e meccaniche	e
	della ceramica	pag. 258
4.	Lo zirconio e il suo impiego in Odontotecnica	pag. 260
	4.1 Le proprietà chimiche e fisiche dello zirconio	pag. 261
ESE	RCIZI di autoverifica	pagg. 262-264

Capitolo 13 Materiali organici in Odontotecnica

1. La cera e il suo impiego in Odontotecnica	pag. 265
1.1 Le proprietà chimiche, fisiche e meccaniche delle cere	pag. 266
1.2 Le varietà di cere	pag. 267
2. Gli idrocolloidi e il loro impiego in Odontotecnica	pag. 269
2.1 Gli idrocolloidi e il loro comportamento	pag. 269
2.2 Gli agar	pag. 270
2.3 Gli alginati	pag. 271
3. Gli elastomeri e il loro impiego in Odontotecnica	pag. 273
3.1 I pregi e i difetti degli elastomeri rispetto agli idrocolloidi	pag. 274
3.2 Le gomme al polietere	pag. 274
3.3 Le gomme al polisolfuro	pag. 275
3.4 I siliconi di condensazione	pag. 276
3.5 I siliconi di addizione	pag. 276
4. Il polimetilmetacrilato e il suo impiego in Odontotecnica	pag. 279
4.1 Proprietà chimico-fisiche del MMA e del PMMA	pag. 280
4.2 Le resine acriliche impiegate in Odontotecnica	pag. 280
4.3 Le proprietà chimiche, fisiche, meccaniche e biologiche	
delle resine acriliche	pag. 281
4.4 Le resine acriliche modificate	pag. 282
ESERCIZI di autoverifica	pagg. 283-284
Indice analitico	pag. 285
Indice dei materiali digitali	pag. 294
Tavola periodica degli elementi	pag. 296