Esperienza

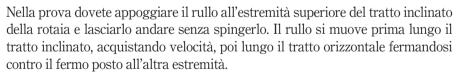
# 7-F

# STUDIO DEL MOTO DI UN RULLO SU UNA ROTAIA INCLINATA

In questa esperienza dovete determinare l'accelerazione di un rullo che si muove lungo un tratto inclinato.

#### Materiali e strumenti

- rotaia costituita da due tratti: uno inclinato e uno orizzontale
- due supporti di altezza fissa e uno regolabile
- rullo
- un traguardo
- cronometro
- metro avvolgibile o riga

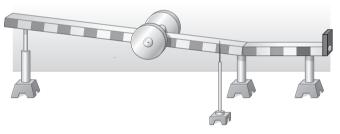

Invece del rullo si può utilizzare una sfera da far scorrere su una rotaia ottenuta con un profilato metallico a U, lungo circa 1 m e leggermente inclinata. Se la sfera ha un diametro di poco maggiore della larghezza del profilato, il suo moto è sufficientemente lento.

#### Procedimento

## **Prima parte**

Disponete la rotaia come mostra la figura:

- il tratto corto orizzontale appoggiato ai supporti fissi;
- il tratto lungo inclinato appoggiato, da una parte, al supporto regolabile rialzato e raccordato dall'altra estremità al tratto corto.




Per ottenere risultati significativi della misura del tempo di percorrenza occorre ripetere la prova più volte e, affinché i risultati siano riproducibili, dovete fare attenzione a non spostare mai la rotaia o i supporti.

Per effettuare la prova dovete:

- collocare il traguardo a 10 cm dall'estremità superiore del tratto inclinato;.
- trattenere il rullo con un dito all'estremità superiore del tratto inclinato;
- lasciare andare il rullo e avviare contemporaneamente il cronometro;
- fermare il cronometro quando il centro del rullo è allineato con il traguardo;
- ripetere la misura spostando il traguardo a 20 cm, poi a 30 cm e così via, fino a raggiungere quasi l'altra estremità del tratto inclinato della rotaia (80 ÷ 100 cm);
- riportare tutte le misure eseguite in tabella.

Per evitare errori di *parallasse*, tenete un solo occhio aperto e posizionate la testa in modo che la linea occhio-traguardo-centro del rullo sia perpendicolare alla rotaia. Senza modificare le condizioni operative ripetete la prova 5-10 volte.



## → Tabella dei dati del gruppo

| $\Delta t$ (s)  |          |          |          |          |          |   |
|-----------------|----------|----------|----------|----------|----------|---|
| $\Delta s$ (cm) | 1ª prova | 2ª prova | 3ª prova | 4ª prova | 5ª prova |   |
| 0               | 0        | 0        | 0        | 0        | 0        | 0 |
| 10,0            |          |          |          |          |          |   |
| 20,0            |          |          |          |          |          |   |
| 30,0            |          |          |          |          |          |   |
| 40,0            |          |          |          |          |          |   |
| 50,0            |          |          |          |          |          |   |
| 60,0            |          |          |          |          |          |   |
| 70,0            |          |          |          |          |          |   |
| 80,0            |          |          |          |          |          |   |
| 90,0            |          |          |          |          |          |   |
| 100,0           |          |          |          |          |          |   |

 $\rightarrow$  Elaborate i risultati ottenuti effettuando i calcoli che sono indicati nella tabella seguente (naturalmente al tempo  $\Delta t_0 = 0$  si ha  $\Delta s_0 = 0$  e  $v_0 = 0$ .

#### → Tabella dei dati del gruppo

| $\Delta s$ (cm) | $\Delta t$ (s) | $\Delta t^2$ | $\Delta s/\Delta t$ (cm/s) | $\Delta s/\Delta t^2$ (cm/s <sup>2</sup> ) |
|-----------------|----------------|--------------|----------------------------|--------------------------------------------|
| 0               | 0              | 0            |                            |                                            |
| 10,0            |                |              |                            |                                            |
| 20,0            |                |              |                            |                                            |
| 30,0            |                |              |                            |                                            |
| 40,0            |                |              |                            |                                            |
| 50,0            |                |              |                            |                                            |
| 60,0            |                |              |                            |                                            |
| 70,0            |                |              |                            |                                            |
| 80,0            |                |              |                            |                                            |
| 90,0            |                |              |                            |                                            |
| 100,0           |                |              |                            |                                            |
|                 |                |              |                            |                                            |

Con i valori riportati in tabella costruite due grafici:

- 1. nel primo riportate sull'asse delle ascisse il tempo e su quello delle ordinate lo spazio;
- 2. nel secondo riportate sull'asse delle ascisse il tempo al quadrato e su quello delle ordinate lo spazio.

#### DOMANDE

- **1** Che cosa rappresenta il rapporto  $\Delta s/\Delta t$ ? Che cosa suggeriscono i valori di questo rapporto che leggi sulla tabella?
- **2** Che cosa si nota osservando i valori del rapporto  $\Delta s/\Delta t^2$  riportati in tabella?
- Osservando il grafico  $\Delta t^2$   $\Delta s$ , scrivi la relazione matematica tra la grandezza spazio e la grandezza tempo.