Quesiti e problemi (sul libro da pag. 189)

1 La doppia natura della luce

1 Qual è la prova più evidente della natura ondulatoria della luce?

la diffrazione

Come sono chiamate le particelle che costituiscono la luce secondo la teoria corpuscolare?

foton

Qual è il rapporto che lega la frequenza e la lunghezza d'onda della luce?

 $v = c/\lambda$

- Un bagnante seduto sulla spiaggia per divertimento si mette a contare le onde che si infrangono sulla battigia.
 - Se ne conta 12 in un minuto, quale proprietà delle onde marine sta valutando?
 - Dopo qualche ora ripete la stessa osservazione e ne arriva a contare 20 in un minuto. Che cosa è cambiato nel moto ondoso?

è aumentata la frequenza

- Una radiazione monocromatica (cioè di un solo colore) è costituita da fotoni che hanno una lunghezza d'onda $\lambda = 450$ nm. Riferendoti allo spettro elettromagnetico (figura 8.1), individua il colore e calcola l'energia associata a ogni fotone di questa radiazione.
- In una stanza buia, basta che ci sia un sottilissimo spiraglio di luce perché essa venga illuminata interamente. Quale fenomeno tipico della luce può giustificare ciò?
- 7 Tutti i fenomeni ondulatori sono caratterizzati dal trasporto di energia. Prova a trovare esempi al riguardo nel caso di onde marine, onde sismiche, onde sonore, onde elettromagnetiche.
- Il processo di fotosintesi è possibile grazie all'energia solare. I *pigmenti fotosintetici* captano i fotoni luminosi e convertono la loro energia in energia chimica. I fotoni assorbiti sono soprattutto quelli rossi ($\lambda = 680$ nm) e quelli blu ($\lambda = 440$ nm), mentre i fotoni verdi non vengono quasi per niente assorbiti.
 - Calcola l'energia trasportata da ogni fotone rosso e blu.

$$E_{\text{rossi}} = 2,92 \cdot 10^{-19} \text{ J}; E_{\text{blu}} = 4,52 \cdot 10^{-19} \text{ J}$$

► Sai giustificare il colore verde delle foglie?

2 La «luce» degli atomi

9 Qual è la differenza fra uno spettro continuo e uno spettro a righe?

- Come vengono ottenuti gli spettri di emissione e di assorbimento dei gas rarefatti?
- In che cosa differiscono le righe di assorbimento e quelle di emissione di uno stesso gas? coincidono

3 L'atomo di Bohr

- 12 Che cosa si intende con il termine «quantizzazione»? Prova a descrivere questo termine con parole tue, utilizzando dei sinonimi.
- Tra gli esempi riportati, stabilisci quali siano quantizzati e quali no, discutendo le tue risposte in classe:
 - a) scambio di denaro
 - b) acqua che scorre dal rubinetto
 - c) latte in tetrabrick
 - d) marmellata prelevata con un cucchiaino dal barattolo
 - e) tempo che scorre
 - f) costituenti della materia

sono quantizzati: a); c); d); f)

14 Il raggio delle orbite dell'atomo di Bohr può essere calcolato con la formula generalizzata

$$r_n = 53 n^2$$

 r_n è il raggio calcolato in picometri (1 pm = 10^{-12} m), n è un numero (numero quantico principale) che può assumere i valori da 1 a 7.

Calcola i raggi delle sette orbite permesse dell'atomo di Bohr.

$$r_1 = 53 \text{ pm}$$
; $r_2 = 212 \text{ pm}$; $r_3 = 477 \text{ pm}$; $r_4 = 848 \text{ pm}$; $r_5 = 1325 \text{ pm}$; $r_6 = 1908 \text{ pm}$; $r_7 = 2597 \text{ pm}$

L'energia associata a ogni orbita dell'atomo di Bohr può essere calcolata con la seguente formula generale:

$$E_n = -K/n^2$$

 E_n rappresenta l'energia (in joule) del livello considerato, K è una costante che vale

$$K = 2.18 \cdot 10^{-18}$$

e *n* è un numero (numero quantico principale) che può assumere i valori dei numeri naturali, da 1 a 7.

Calcola i valori delle energie di tutte le orbite dell'atomo di idrogeno.

$$\begin{split} E_1 &= -2,18\cdot 10^{-18} \text{ J}; E_2 &= -5,45\cdot 10^{-19} \text{ J}; E_3 &= -2,42\cdot 10^{-19} \text{ J}; \\ E_4 &= -1,36\cdot 10^{-19} \text{ J}; E_5 &= -8,72\cdot 10^{-20} \text{ J}; \\ E_6 &= -6,05\cdot 10^{-20} \text{ J}; E_7 &= -4,45\cdot 10^{-20} \text{ J} \end{split}$$

- Considera le dimensioni e le energie delle orbite che hai calcolato nei due esercizi precedenti.
 - ► Che cosa noti al crescere di *n* per quanto riguarda le dimensioni delle orbite?

il raggio atomico aumenta

- Che cosa noti per quanto riguarda l'energia a esse associata? l'energia aumenta
- Sapresti spiegare il segno algebrico negativo davanti alla formula usata per trovare l'energia?

4 La doppia natura dell'elettrone

- 17 Che cosa sono le onde di de Broglie?
- In che modo è stata verificata sperimentalmente l'ipotesi di de Broglie?
- 19 Il microscopio elettronico permette di osservare oggetti con un ingrandimento molto superiore al normale microscopio ottico. Il microscopio elettronico utilizza un fascio di elettroni che subisce fenomeni di diffrazione e di interferenza.
 - ➤ Quale proprietà dell'elettrone permette di spiegare questo tipo di comportamento?

L'elettrone si comporta come un'onda di de Broglie

- Il vento solare è un flusso di particelle proveniente dalle regioni più esterne del Sole e che investe tutto lo spazio interplanetario, compresa la Terra. È costituito da elettroni, protoni e altre particelle elettricamente cariche che si muovono ad una velocità molto elevata, oltre 500 km/s.
 - ► Usando la formula di de Broglie sull'onda di materia, calcola la lunghezza d'onda associata a ogni elettrone del vento solare. $\lambda = 1.45 \cdot 10^{-9} \text{ m}$
- L'aereo più veloce fino a ora costruito è un jet ipersonico che riesce a volare a Mach 10, quindi 10 volte più velocemente rispetto al suono (nell'aria circa 330 m/s) e con una massa di circa 50 000 kg.
 - Popular Quale lunghezza d'onda è associata all'aereo quando è in volo? $\lambda = 4,02 \cdot 10^{-42} \text{ m}$
 - ➤ Quali considerazioni puoi fare sulle lunghezze d'onda associate a oggetti macroscopici?
- Quale dovrebbe essere la velocità di un corpo di massa pari a 50 kg affinché la lunghezza d'onda dell'onda di materia (onda di de Broglie) a esso associata fosse quella di una radiazione luminosa di colore rosso ($\lambda = 700$ nm)? Esegui il calcolo e commenta il risultato. $v = 1,89 \cdot 10^{-29}$ m/s

5 L'elettrone e la meccanica quantistica

- Che cosa si intende con il termine «meccanica quantistica»?
- Che cosa afferma il principio di indeterminazione di Heisenberg?
- Perché, alla luce di quanto enunciato dal principio di indeterminazione, non ha senso parlare di orbita di un elettrone?

6 L'equazione d'onda

- **26** Che cosa si intende per onda stazionaria?
- **27** Che cosa è la funzione d'onda?
- **28** Che significato assume ψ^2 ?
- In che senso le onde di de Broglie possono essere definite «onde di probabilità»?

Numeri quantici e orbitali

- **30** Scrivi la definizione di orbitale.
- 31 Descrivi il significato di ciascuno dei quattro numeri quantici.
- Scrivi tutti i valori che possono assumere l e m quando n = 3. l = 0, 1, 2; m = 0, -1, +1, -2, +2
- Abbina alle seguenti terne di numeri quantici il rispettivo orbitale
 - a) n = 2 l = 0 m = 0
 - b) n = 6 l = 2 m = -1 6d
 - c) n = 4 l = 3 m = -3
 - d) n = 3 l = 2 m = +2 3d
- Individua gli eventuali errori presenti nei seguenti gruppi di numeri quantici.
 - a) n = 2 n = 0 $m_s = +1/2$
 - b) n = 1 l = 0 $m_s = \pm 1/2$
 - c) n = 3 n = 0 $m_s = -1/2$
 - d) n = 0 l = 0 m = 0 $m_s = +1$

8 Dall'orbitale alla forma dell'atomo

- **35** Che cosa si intende per superficie di contorno?
- **36** Da quali numeri quantici sono determinati la forma e il volume delle superfici di contorno?

I (la forma); n (il volume)

Quali sono le forme delle superfici di contorno degli orbitali $s, p \in d$?

9 L'atomo di idrogeno secondo la meccanica quantistica

- In che modo si ottiene l'insieme degli orbitali che corrispondono agli stati quantici dell'atomo di idrogeno?

 dalla risoluzione dell'equazione d'onda
- Da che cosa dipende lo stato energetico nell'atomo di idrogeno?

 dal numero quantico n

10 La configurazione degli atomi polielettronici

- Spiega la regola di Hund e il principio di esclusione di Pauli.
- Quali sono le regole per il corretto riempimento degli orbitali?
- 42 Spiega le irregolarità di riempimento degli orbitali che si verificano a partire dagli elementi con Z = 21
- Quali delle seguenti non possono essere parti di configurazioni elettroniche? Individua gli errori e spiegali.

a) $2s^2$

 $b') 2d^5$

d) 3f¹0

 $\sqrt{s^3}$

e) $8s^{1}$

f) $6d^{5}$

- Individua gli eventuali errori nelle seguenti configurazioni, spiegando perché non sono corrette.
 - a) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^66s^24f^{10}5d^{10}6p^2$ eorretta/errata perchéil livello 4f non è completo
 - b) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^5$ corretta/errata perché
 - c) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^66s^24f^{14}5d^{10}6p^4$ corretta/errata perché
 - d) $1s^22s^22p^63s^23p^63d^64s^24p^64d^{10}5s^2$
 - corretta/errata perché <u>il livello 3d non è completo</u>

- e) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^26p^6$ $7s^2$
- corretta/errata perché
- Date le seguenti configurazioni elettroniche, determina il numero atomico Z e il nome dell'elemento di cui sono caratteristiche.

a) $1s^22s^22p^3$

Z = 7: azoto

b) $1s^22s^22p^63s^23p^63d^54s^2$

Z = 25; manganese

c) $1s^22s^22p^63s^23p^63d^{10}4s^24p^4$

Z = 34; selenio

d) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^2$

Z = 50; stagno

e) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^66s^1$

Z = 55; cesio

- 46 Nelle seguenti configurazioni totali individua gli elettroni di valenza, sottolineandoli, e attribuisci all'elemento il gruppo e il periodo di appartenenza. Individua gli elementi sulla tavola periodica.
 - a) $1s^22s^22p^2$

gruppo 14; periodo 2; carbonio

b) $1s^22s^22p^63s^23p^63d^14s^2$

gruppo 3; periodo 4; scandio

c) $1s^22s^22p^63s^23p^5$

gruppo 17; periodo 3; cloro

d) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^2$

gruppo 14; periodo 5; stagno

e) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^26p^2$ gruppo 14; periodo 6; piombo

47 Completa la tabella, inserendo i dati mancanti.

N° atomico	N° neutroni	N° massa	Simbolo isotopo	Configurazione elettronica
Z = 31	N = 38	A = 69	⁶⁹ Ga	15 ² 25 ² 2p ⁶ 35 ² 3p ⁶ 3d ¹⁰ 45 ² 4p ¹
Z = 53	N = 74	A = 127	¹²⁷	15 ² 25 ² 2p ⁶ 35 ² 3p ⁶ 3d ¹⁰ 45 ² 4p ⁶ 4d ¹⁰ 55 ² 5p ⁵
Z = 13	N = 14	A = 27	²⁷ AI	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ¹
Z = 21	N = 24	A = 45	45 21 5c	15 ² 25 ² 2p ⁶ 35 ² 3p ⁶ 3d ¹ 45 ²
Z = 15	N = 16	A = 31	31 P	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ³
Z = 11	N = 12	A = 23	²³ ₁₁ Na	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ¹
Z = 19	N = 21	A = 40	40 19 K	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹
Z = 23	N = 28	A = 51	51V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²

- Individua i seguenti elementi, di cui viene fornito il numero atomico Z. Scrivi poi la configurazione elettronica completa e rappresenta l'ordine di riempimento degli orbitali.
 - a) Z = 13
- b) Z = 31
- c) Z = 52
- d) Z = 29
- e) Z = 41
- f) Z=58

a) Al: 1s²2s²2p⁶3s²3p¹ b) Ga: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p¹ c) Te: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰5s²5p⁴

- d) Cu: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s¹ e) Nb: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d⁴5s¹ f) Ce: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰4f¹5s²5p⁶5d¹6s²
- Individua tra le seguenti configurazioni esterne quelle di stato fondamentale e quelle di stato eccitato.
 - a) $4s^23d^94p^1$

stato eccitato

b) $4s^23d^{10}4p^55s^1$

stato eccitato

c) $4s^23d^{10}4p^65s^04d^2$

stato eccitato

d) $4s^23d^{10}4p^1$

stato fondamentale

e) $4s^23d^{10}4p^5$

stato fondamentale

f) $4s^1 3d^9 4p^1$

stato eccitato

Quale elemento presenta la seguente configurazione elettronica?

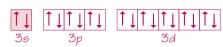
neon (Ne)

51 Quale elemento presenta la seguente configurazione elettronica?

azoto (N)

Scrivi la configurazione elettronica e rappresenta l'ordine di riempimento degli orbitali di ossigeno, zolfo e selenio. Che cosa hanno in comune le configurazioni elettroniche di questi elementi?

5: 15²25²2p⁶35²3p⁴



Se: $15^2 25^2 2p^6 35^2 3p^6 3d^{10} 45^2 4p^4$

nello strato esterno sono tutte ns^2np^4

- Scrivi la configurazione elettronica e rappresenta l'ordine di riempimento degli orbitali di quattro elementi aventi numero atomico tra 10 e 20.
- Scrivi la configurazione elettronica dell'ittrio Y (Z = 39) tenendo conto delle irregolarità nell'ordine di riempimento degli orbitali.

- Scrivi le configurazioni elettroniche dei seguenti ioni.
 - a) Be^{2+}
 - b) S²⁻

ı

c) Na⁺
 d) Al³⁺

- 15²25²2p⁶
- 1*s*²2*s*²2*p*⁶

Review (sul libro da pag. 192)

- Lo ione sodio colora la fiamma di una caratteristica e intensa luce giallo-arancione con lunghezza d'onda $\lambda = 589$ nm.
 - ► Calcola la frequenza della radiazione.

$$v = 5.09 \cdot 10^{14} \, \text{Hz}$$

➤ Qual è l'energia associata a una mole di fotoni con la frequenza della luce del sodio?

$$E = 204 \text{ Kj/mol}$$

- Per rompere i legami di una mole di Cl₂ sono necessari 243,4 kJ di energia. Puoi rompere i legami irraggiando il gas con una luce di lunghezza d'onda opportuna.
 - ► Qual è la lunghezza d'onda della radiazione?

$$\lambda = 492 \text{ nm}$$

Scrivi la configurazione elettronica degli ioni K^+ , O^{2-} e Hf^{4+} .

K+: 16°25°2p°35°3p° 0²-: 15°25°2p° Hf⁴⁺: 16°25°2p°35°3p°3d°46°4p°4d°4f⁴56°5p°

- Due elementi allo stato ionico presentano la stessa configurazione elettronica 1s²2s²2p⁶. Un elemento allo stato ionico assume carica -2 mentre l'altro carica +3.
 - ▶ Indica il nome dei due elementi.

ossigeno (0) e alluminio (Al)

- Qual è il numero di elettroni contenuti in 30 g di ioni Cu²⁺? 7.67 · 10²⁴
- Nella corona solare vi sono atomi di ferro ionizzati 13 volte.
 - Che cosa puoi dire circa l'energia di questa regione del Sole?
 - Prova a risalire, studiando la configurazione elettronica totale di questo elemento, al livello che viene intaccato con questa ionizzazione.

il terzo livello

7 Uno degli strumenti più potenti per lo studio della natura fisica e chimica degli oggetti più lontani del cosmo (stelle, galassie e nebulose) è la loro analisi

spettrale. Per lo studio del Sole è molto importante la cosiddetta riga H-alfa dello spettro dell'idrogeno, con lunghezza d'onda pari a $\lambda = 656,28$ nm.

Calcola l'energia del fotone emesso dall'atomo di idrogeno che porta alla produzione di questa riga e stabilisci la banda dello spettro a cui appartiene.

 $E = 3.03 \cdot 10^{-19} \text{J};$ visibile - riga rossa

► A quale salto elettronico è dovuta la riga?

dal livello 2 al livello 3

- Le righe spettrali non sempre sono dovute a salti elettronici tra orbitali; per esempio, la cosiddetta «riga a 21 cm» emessa dalle nebulose, oggetti gassosi costituiti soprattutto da idrogeno atomico, è dovuta all'inversione di spin del suo elettrone rispetto al protone. Essa viene captata con uno strumento molto particolare: il radiotelescopio.
 - Calcola l'energia associata a questa riga.

 $E = 9,47 \cdot 10^{-25}$ J

► In quale banda dello spettro si trova?

microonde

9 Write the electron configuration for an atom that has 17 electrons.

 $1s^2 2s^2 2p^6 3s^2 3p^5$

Write the electron configuration for nickel, whose atomic number is 28. Remember that the 4s orbital has lower energy than the 3d orbital does and that the d sublevel can hold a maximum of 10 electrons.

 $1s^22s^22p^63s^23p^63d^84s^2$

- How many orbitals are completely filled in an atom of an element whose atomic number is 18?
- Use the Pauli exclusion principle, the Ausbau principle or the Hund rule to explain why the following electron configurations are incorrect.

 a) 1s²2s³2p⁶3s¹ b) 1s²2s²2p⁵3s¹

Write the correct configurations.

a) 15²25²2p⁶35² b) 15²25²2p⁶ Calculate the maximum number of electrons that can occupy the third energy level orbitals.

18

- An empty orbital is not like an empty box. An empty box can be seen. So can the contents of the box when the box is filled. An orbital cannot be *seen*, whether it is empty or not. However, when an orbital is occupied, the electron density as given by the square of the wave function describing the orbital can be *seen*.» (M. I. Winter, *Chemical Bonding*, Oxford Science Publications.)
 - ➤ Traduci il brano e commentalo. Prova a pensare a uno sciame di moscerini, oppure a un'elica di aeroplano in rapidissima rotazione: puoi trovare analogie e differenze con la situazione di un orbitale occupato oppure vuoto?

INVESTIGARE INSIEME

L'insegnante ti consegna un paio di occhiali di sicurezza, un bunsen, una bacchetta di vetro con filo metallico al nichel-cromo e tre polveri (cloruro di sodio, NaCl; cloruro di bario, BaCl₂; cloruro di calcio, CaCl₂).

- Descrivi la procedura per identificare le tre polveri.
- ➤ Quale colore assume la fiamma per ciascuna polvere analizzata?
- ► Il colore della fiamma è dovuto all'atomo del metallo oppure del cloro?
- Puoi spiegare cosa accade, a livello atomico, quando la fiamma assume un determinato colore?