BIOLOGY IN ENGLISH

Making cheese: genetic engineering comes to the rescue

In the past, the cheese-making industry was dependent upon a substance called rennet. Rennet consists of two enzymes: chymosin and bovine pepsin. These enzymes, especially chymosin, are essential for coagulating milk and converting it to cheese. Traditionally, rennet was collected from the stomach lining of calves, where chymosin and bovine pepsin ensure the proper digestion of milk.

As the demand for rennet increased, scientists began testing various technologies to supply the substance, but they could find none that was satisfactory.

Finally, genetic engineering saved the day for the cheese industry. The gene responsible for the formation of chymosin was isolated from calf cells and cloned. The gene was then inserted into the genome of several organisms, including the bacterium *Escherichia coli*, the fungus *Aspergillus niger*, and the yeast *Kluyveromyces lactis*. The genetically engineered organisms produced copious amounts of chymosin with great success. Researchers confirmed that the new chymosin product contained no toxins and no living recombinant organisms.

Cheese containing chymosin was the first food dependent on genetic engineering in United States history.

Cheese made with genetically engineered chymosin is indistinguishable from rennet-produced cheese. It meets also the desires of strict vegetarians, since it contains no rennet.

ANSWER

Why do we prefer using GM bacteria instead of other GM organisms for industrial synthesis of biochemical products?

