Variazione dei parametri I_{CBO} , V_{BE} e h_{FE} con la temperatura

Si analizzano in modo più approfondito i parametri dei BJT che sono influenzati dalle variazioni di temperatura:

a) Corrente di saturazione inversa della giunzione collettore-base: I_{CB0} La corrente I_{CB0} , che è la corrente di saturazione inversa di una giunzione, subisce un raddoppio ogni 10° C di aumento della temperatura, cioè:

$$I_{CB0}(T_1) = I_{CB0}(T_0) \cdot 2^{\Delta T_j/10}$$

essendo: $I_{CB0}(T_0)$ ed $I_{CB0}(T_1)$ rispettivamente i valori della corrente di saturazione inversa alla temperatura di riferimento T_0 (temperatura ambiente, pari a 25 °C) e alla temperatura T_1 , cui si porta la giunzione, mentre $\Delta T_j = T_1 - T_0$ è il salto termico cui è sottoposta la giunzione stessa.

b) Differenza di potenziale della giunzione base-emettitore: $V_{\rm BE}$ La giunzione base-emettitore è una normale giunzione polarizzata direttamente. L'aumento di temperatura determina un calo della tensione, stimato in 25 mV ogni 10 °C di aumento della temperatura. In formule:

$$V_{BE}(T_1) = V_{BE}(T_0) - 2.5 \cdot \Delta T_i \cdot 10^{-3}$$

essendo: $V_{BE}(T_0)$ e $V_{BE}(T_1)$ rispettivamente i valori della tensione V_{BE} alla temperatura di riferimento T_0 (temperatura ambiente, pari a 25 °C) e alla temperatura T_1 , cui si porta la giunzione, mentre $\Delta T_j = T_1 - T_0$ è il salto termico cui è sottoposta la giunzione stessa.

Guadagno di corrente in continua: h_{FE} Subisce variazioni termiche giustificabili con le seguenti considerazioni: la corrente I_C è determinata dai portatori maggioritari che vengono iniettati dall'emettitore e non si ricombinano in base. L'aumento di temperatura conferisce energia alle cariche, riducendo le possibilità di ricombinazione. Questo significa che, a parità di I_B ed I_E , I_C aumenta con la temperatura.