Phelan, Pignocchino

Le scienze naturali

Osservare la Terra e la materia

ESERCIZI AGGIUNTIVI DI FINE CAPITOLO

Capitolo 2 – LE MISURE DELLA TERRA

1. Conv	erti in kg le	seguenti misure, esprimendole in notazione scientifica.
a) 2	200 hg	
b) 1	0 g	
c) 5	i0 ng	
d) 3	80 mg	
2. Espr	imi in L i se	guenti volumi.
a) 2	200 cm ³	
b) 5	i0 dm³	
c) 3	80 m ³	
d) 1	9 mm ³	
3. Espr	imi in cm³ i	seguenti volumi.
a) 1	00 mL	
b) 3	3 L	
c) 2	20 dL	
d) 0),15 L	

4.	Un cubo di alluminio (d = 2,70 g/cm³) ha lo spigolo che misura 2,50 cm. Qual è la sua massa?
5.	Qual è il volume occupato da 315 g di argento (d = 10,49 g/cm³)?
6.	Quanto pesa un corpo di massa 7,0 kg sulla Terra?
7.	Qual è la massa di un corpo che sulla Terra pesa 1000 N?

Capitolo 3 – I MATERIALI DELLA TERRA

a) allo stato solido a	0 °C:				
o) allo stato liquido a	10 °C:				
c) allo stato gassoso	a 100 °C:				
		_		_	
Sostanza	A	В	С	D	E
Temperatura di	-98	-95	-90	+26	-12
fusione (°C)					
Temperatura di	+57	+56	+82	+82	+119
ebollizione (°C)	137	130	102	102	117
ogeno con 80 g di	ossigeno?		do reagire co		
lrogeno con 80 g di iscaldando il rame d rame. Scrivi l'equaz	ossigeno?	o, i due elem role e calcola	enti reagisco	ono e si ottic	ene il sol
iscaldando il rame o rame. Scrivi l'equaz se si sono formati 4	ossigeno?	o, i due elem role e calcola	enti reagisco	ono e si ottic	ene il sol
irogeno con 80 g di iscaldando il rame c rame. Scrivi l'equaz	ossigeno?	o, i due elem role e calcola	enti reagisco	ono e si ottic	ene il sol
lrogeno con 80 g di iscaldando il rame d rame. Scrivi l'equaz	ossigeno?	o, i due elem role e calcola	enti reagisco	ono e si ottic	ene il sol
Irogeno con 80 g di iscaldando il rame d rame. Scrivi l'equaz se si sono formati 4	ossigeno?	o, i due elem role e calcola uro?	enti reagisco a quanto zolf	ono e si ottic o ha reagito	ene il sol con 32 (
iscaldando il rame d rame. Scrivi l'equaz se si sono formati 4	con lo zolfe cione in par l8 g di solfe	o, i due elem role e calcola uro? nmoniaca l'id	enti reagisco a quanto zolf Irogeno e l'az	ono e si ottic o ha reagito	ene il sol con 32 (
iscaldando il rame d rame. Scrivi l'equaz se si sono formati 4 ella reazione di sint mmoniaca. Scrivi l'e	con lo zolfe cione in par l8 g di solfe cesi dell'am equazione	o, i due elem role e calcola uro? nmoniaca l'id della reazion	enti reagisco a quanto zolf lrogeno e l'az ne in parole.	ono e si ottic o ha reagito	ene il sol con 32 (
iscaldando il rame di rame. Scrivi l'equaz se si sono formati 4 ella reazione di sint mmoniaca. Scrivi l'e n un laboratorio si fa	con lo zolfo cione in par la g di solfo cesi dell'am equazione anno reagi	o, i due elem role e calcola uro? nmoniaca l'id della reazior re 10 g di idr	enti reagisco a quanto zolf rogeno e l'az ne in parole. ogeno con 2	ono e si ottic o ha reagito zoto reagisc 8 g di azoto	ene il sol con 32 g ono forn
lrogeno con 80 g di iscaldando il rame (rame. Scrivi l'equaz	con lo zolfo cione in par la g di solfo equazione anno reaginamente cor	o, i due elem role e calcola uro? moniaca l'id della reazion re 10 g di idr n tutto l'azoto	enti reagisco a quanto zolf rogeno e l'az ne in parole. ogeno con 2	ono e si ottic o ha reagito zoto reagisc 8 g di azoto	ene il sol con 32 g ono forn
iscaldando il rame di rame. Scrivi l'equaz se si sono formati 4 ella reazione di sint mmoniaca. Scrivi l'e n un laboratorio si fa eagiscono completa	con lo zolfo cione in par la g di solfo equazione anno reagio amente cor fine reazio	o, i due elem role e calcola uro? moniaca l'id della reazion re 10 g di idn n tutto l'azoto ne. Calcola:	enti reagisco a quanto zolf rogeno e l'az ne in parole. ogeno con 2 o disponibile	ono e si ottico o ha reagito zoto reagisc 8 g di azoto mentre la p	one il sol con 32 g

5. Facendo reagire 5,95 g di stagno con cloro si formano 9,50 g di cloruro di stagno. Scrivi l'equazione in parole e calcola quanto cloro, in grammi, è stato usato?
6. Se si riscaldano 123 g di clorato di potassio, questo sale si decompone, liberando ossigeno e lasciando un residuo di 75 g di cloruro di potassio secondo questa reazione:
$2KCIO_3 \! o 2KCI + 3O_2$
Calcola la massa dell'ossigeno formato.
7. 64 g di zolfo reagiscono completamente con il ferro e si ottengono 176 g di solfuro di ferro. Scrivi l'equazione in parole e calcola quanti grammi di ferro sono necessari per la reazione.
8. Zolfo e zinco si combinano formando il solfuro di zinco, con un rapporto di massa: zolfo : zinco = 1,00 g : 2,04 g
Qual è la percentuale di zolfo in questo composto?
 9. L'alluminio si ricava industrialmente dall'allumina (ossido di alluminio, Al₂O₃). In 102 g di allumina sono contenuti 54 g di alluminio. Rispondi alle seguenti domande. a) Quanto alluminio si può ricavare da 5 kg di allumina?

b) Quanti grammi di ossigeno si combinano con 1 g di alluminio in questo co	-
10. Per formare il composto CaO, ossido di calcio, 40,0 g di calcio reagisc	ono
esattamente con 16,0 g di ossigeno. Rispondi alle seguenti domande.	
a) Quanti grammi di ossigeno sono necessari per reagire esattamente con scalcio?	_
b) Quanto ossido si forma?	
11. Nel fluoruro di calcio il rapporto delle masse è il seguente:	
1,05 g di calcio : 1,00 g di fluoro	
Rispondi alle seguenti domande, considerando di mettere a contatto 4 calcio e 40,0 g di fluoro.	0,0 g di
a) Quale dei due reagenti è in eccesso?	
b) Quanto fluoruro di calcio si forma?	
c) Quanti grammi del reagente in eccesso non reagiscono?	
12. Nell'acqua il rapporto di combinazione fra idrogeno e ossigeno è 1,00 q Quanto idrogeno e quanto ossigeno sono contenuti in 100 g di acqua?	
13. Nell'aspirina (nome commerciale dell'acido acetilsalicilico, C ₉ H ₈ O ₄), il r combinazione fra i tre elementi da cui è composta è il seguente:	apporto di
13,390 g di carbonio : 1,000 g di idrogeno : 7,931 g di ossigen	0
Quanti grammi di ogni elemento sono contenuti in 1,00 g di aspirina?	

14	. Il metano (CH₄) è un composto il cui rapporto di combinazione tra carbonio e idrogeno è il seguente:
	massa carbonio / massa idrogeno = 3,0
	Calcolate la massa di carbonio che si combina con 8,0 g di idrogeno per dare metano.

Capitolo 4 – LA TEORIA ATOMICA E LA MATERIA

1.	Facendo reagire il cloro con il fosforo, si possono ottenere due composti diversi. Ne primo caso, si sa che 30,97 g di fosforo reagiscono completamente con 106,35 g di cloro. Nel secondo caso, invece, 30,97 g di fosforo reagiscono completamente con 177,25 g di cloro. Qual è il rapporto fra le quantità di cloro che nei due composti si combinano con 1,00 g di fosforo?
2.	Il piombo forma due composti con l'ossigeno: nel primo caso 207,00 g di piombo reagiscono con 16,00 g di ossigeno; nel secondo caso 310,50 g di piombo reagiscono con 48,00 g di ossigeno. Qual è il rapporto fra le quantità di piombo che nei due composti si combinano con 1,00 g di ossigeno?
3.	Quanti protoni, elettroni e protoni contiene l'atomo ²¹ 10Ne?
4.	Quanti protoni, elettroni e protoni contiene l'atomo ³ ₁ H?
5.	Quanti protoni, elettroni e protoni contiene lo ione ²⁵ Mg ²⁺ ? E lo ione ³⁵ Cl ⁻ ?

6. Completa la seguente tabella, riferendoti ad atomi neutri.

Simbolo isotopo	Numero atomico	Numero di protoni	Numero di elettroni	Numero di massa	Numero di neutroni
	35			80	
			18	40	
		11			12
⁷³ Li					
	6				6
N				15	

_							
7	Scrivi il	eimhala	dai eaguan	ti ioni di	i cui viana	indicata l	a composizione:
		SIIIIDUIU	uci Scuucii	u iviii. u	ı cui vicile	illulcala i	a cullibusiziulie.

| a) | 26 p, 23 e ⁻ , 32 n |
 | |
|----|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| b) | 19 p, 18 e ⁻ , 21 n |
 | |
| c) | 24 p, 21 e ⁻ , 28 n |
 | |
| d) | 53 p, 54 e ⁻ , 74 n |
 | |
| e) | 8 p, 10 e ⁻ , 8 n |
 | |
| f) | 38 p, 36 e ⁻ , 50 n |
 | |

8. Calcola il numero di protoni e elettroni presenti nei seguenti ioni

a)	Fe ³⁺	
b)	K^{+}	
c)	Ba ²⁺	
d)	Br⁻	
e)	S^{2-}	

9. Lo	zucchero che si utilizza in cucina è un composto chiamato saccarosio. La sua
fc	rmula chimica è C ₁₂ H ₂₂ O _{11.} Rispondi alle seguenti domande.
a)	Quanti e quali tipi di elementi sono presenti nello zucchero?
b)	Qual è il numero di atomi per ogni elemento?
c)	Ripeti lo stesso esercizio per l'acido solforico H ₂ SO ₄ .
	er ognuna delle seguenti formule chimiche, scrivi il numero e il nome degli ementi componenti e indica il numero totale di atomi per ogni elemento.
a)	H ₂ O
b)	HNO ₃
c)	(NH ₄) ₃ PO ₄
d)	Mg(ClO ₂) ₂
	alcolare la massa atomica media del cloro sapendo che in natura il ³⁵ Cl è resente al 75,77% e il ³⁷ Cl al 24,23%.
	alcolare la massa atomica media del potassio, sapendo che in natura il ³⁹ K è

 13 Da	otormina la m	nassa molecolare delle seguenti molecole:
13. D	eterrima ia n	lassa molecolare delle segueriti molecole.
a)	O_2	
b)	H_2SO_4	
c)	C_2H_5OH	
d)	SO ₃	
e)	Br_2	
f)	HNO ₃	
g)	$(NH_4)_2SO_4$	
h)	CH₃COOH	
i)	$C_6H_{12}O_6$	
14. Ca	alcola la mas	sa di una mole delle seguenti sostanze:
a)	H_2O	
b)	$C_6H_{12}O_6$	
c)	K_2CrO_4	
d)	HNO ₃	
e)	Al_2S_3	
f)	Pb(ClO ₃) ₂	
		umero di moli presenti in 100 g delle seguenti sostanze:
a)	N_2O_3	
b)	SO ₂	
c)	Fe ₂ O ₃	
d)	Cl ₂	
e)	PbO_2	

16. Calcola sostanze	a quanti grammi corrispondono 3,00 moli di ciascuna delle seguenti e:
a)	CaO
b)	N_2O_5
c)	NH_3
d)	CO ₂
e)	K ₂ CrO ₄
f)	HCI
17. Dato un (campione di 528 g di diossido di carbonio (CO ₂) calcola:
a)	la massa molare della sostanza:
b)	il numero delle moli contenuto nel campione:
c)	il numero di molecole presenti nel campione :
18. Consider	ra un campione di 18,0 g di fruttosio (C ₆ H ₁₂ O ₆) e calcola:
a)	la massa molare della sostanza:
b)	il numero delle moli contenuto nel campione:
c)	il numero di molecole presenti nel campione:

a)	42 moli di Ha(NO:	3)2
b)	7 moli di N₂O₅	
20. Determir	na il numero di moli pres	enti in 1 kg delle seguenti sostanze:
a)	P_2O_5	
b)	CH₃COOH	
c)	Cl_2O_3	
d)	H_2	
e)	SO ₂	
	-	senti in 100 g dei seguenti elementi
a) b) c)	Zn	
b)	Zn Cu	
b) c) d)	Zn Cu Ne	
b) c) d)	Zn Cu Ne	
b) c) d)	Zn Cu Ne	
b) c) d) 22. Calcola i	Zn Cu Ne	
b) c) d) 22. Calcola i	Zn Cu Ne il peso in grammi di una	singola molecola di diossido di carbonio, CO ₂ .

	b)	5,59 10 ⁻⁵ moli di stagno:
	c)	52,2 moli di H ₃ PO ₄ :
	d)	22,5 moli di H ₂ SO ₄ :
24.		zione tra alluminio (AI) e cloruro di idrogeno (HCI), si ottiene eso (H ₂) e tricloruro di alluminio (AICI ₃).
	Qual è la reazio	ne scritta e bilanciata correttamente?
	a) 2Al + 2AlCl ₃ -	→ 3H ₂ +6HCl
	b) 2Al + 6HCl →	2AICI ₃ + 3H ₂
	c) Al + 3HCl → A	AICI ₃ + 3H ₂
	d) 2Al + 6HCl →	2AICI + 3H
25.		ı la reazione di fotosintesi con cui le piante usano energia solare per io (C ₆ H₁₂O ₆) e O₂ da acqua e CO₂.
26.		bisce la seguente combustione all'aria formando diossido di e acqua (H ₂ O), come indicato dalla seguente equazione non
		$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$
	-	eguenti domande:
	a) Qual è l'equaz	zione bilanciata?
	b) Quanti atomi o	di ossigeno ci sono da ciascun lato dell'equazione?

c)	Quanti atomi di idrogeno ci sono da ciascun lato dell'equazione?
d)	Quanti atomi di carbonio ci sono da ciascun lato dell'equazione?

27. Quale tra le seguenti equazioni è bilanciata correttamente?

A.
$$Cu + H_2SO_4 \rightarrow CuSO_4 + H_2O + SO_2$$

B.
$$Ca(OH)_2 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + H_2O$$

C.
$$NH_3 + O_2 \rightarrow HNO_3 + H_2O$$

D. CaO +
$$H_2O \rightarrow Ca(OH)_2$$

28. Bilancia le seguenti reazioni:

a)
$$H_2 + N_2 \rightarrow NH_3$$

b)
$$FeCl_2 + SnCl_4 \rightarrow FeCl_3 + SnCl_2$$

c)
$$S_8 + O_2 \rightarrow SO_3$$

d)
$$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$$

e)
$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

f)
$$CH_4O + O_2 \rightarrow CO_2 + H_2O$$

g) NaOH +
$$CO_2 \rightarrow Na_2CO_3 + H_2O$$

h) $Fe_2O_3 + AI \rightarrow AI_2O_3 + Fe$ i) $CH_4 + O_2 \rightarrow CO_2 + H_2O$ j) $NaNO_3 + C \rightarrow Na_2CO_3 + CO + N_2$ k) $Fe_2O_3 + CO \rightarrow Fe + CO_2$ l) $SiO_2 + C \rightarrow SiC + CO$ m) $N_2 + O_2 \rightarrow N_2O_3$ n) $CaO + C \rightarrow CaC_2 + CO$ o) $KCIO_3 \rightarrow KCI + O_2$