

SOMMARIO

LA MATERIA, L'ENERGIA **E LE MISURE**

- 1. La chimica spiega i fenomeni della realtà che ci circonda
- 2. Le grandezze e il Sistema Internazionale delle unità di misura
- 3. La notazione scientifica è utile per esprimere numeri molto grandi o molto piccoli
- 4. L'incertezza di una misura si esprime attraverso le cifre significative

PER SAPERNE DI PIÙ Le operazioni con le potenze

- 5. Le cifre significative nei calcoli e l'arrotondamento del risultato
- 6. Distinguere tra massa e peso e tra volume e capacità
- 7. La densità di un corpo è il rapporto tra massa e volume
- 8. L'energia può essere utilizzata per compiere lavoro
- 9. Il calore e la temperatura non sono equivalenti
- 10. Le grandezze possono essere intensive o estensive

PER SAPERNE DI PIÙ Errare humanum est: gli errori nella pratica di laboratorio

FACCIAMO IL PUNTO

ESERCIZI

23

1

IN DIGITALE VIDEO: COME SI FA?

Usare una bilancia elettronica Misurare il volume di un liquido

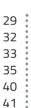
Scegliere la vetreria adatta Misurare la densità di un solido

RIPASSA
SAI? CON LO
SMARTPHONE

ZIE 20 esercizi interattivi

UN MODELLO PER LA MATERIA

- 1. Lo stato fisico di un corpo può cambiare tramite i passaggi di stato
- 2. La teoria corpuscolare della materia spiega i passaggi di stato
- 3. Un modello per i gas: particelle distanti legate da forze debolissime
- 4. Un modello per i liquidi: deboli forze attrattive tra particelle


LABORATORIO L'evaporazione dei liquidi

5. Un modello per i solidi: particelle fortemente legate

FACCIAMO IL PUNTO

ESERCIZI

Sei pronto per la verifica?

50

IN DIGITALE

VIDEO I passaggi di stato

44 **ZIE** 20 esercizi interattivi 45

SISTEMI, MISCELE, **SOLUZIONI**

- 1. I sistemi possono essere aperti, chiusi o isolati
- 2. I sistemi possono essere omogenei o eterogenei
- 3. Le miscele sono formate da due o più componenti
- 4. Le soluzioni possono essere gassose, liquide o solide
- 5. La solubilità indica quanto soluto può sciogliersi in un solvente
- 6. Perché la solubilità varia al variare della pressione e della temperatura
- 7. La concentrazione indica quanto soluto è presente in soluzione
- 8. Una soluzione che si forma può assorbire o produrre calore
- 9. Il modello particellare spiega anche l'origine del calore di soluzione

LABORATORIO Effetto termico della dissoluzione di un solido in acqua

FACCIAMO IL PUNTO

IN DIGITALE

VIDEO

La preparazione di una soluzione

58 59 63

57

64

66

66

67

RIPASSA SAI? CON LO SMARTPHONE

ZIE 20 esercizi interattivi

ESERCIZI

Ш

DALLE MISCELE ALLE SOSTANZE PURE

- 1. Molte miscele eterogenee si separano con metodi meccanici
- 2. Le miscele omogenee si separano con metodi più impegnativi
- 3. La temperatura di ebollizione dipende dalla tensione di vapore e dalla pressione atmosferica
- 4. Le proprietà fisiche di una soluzione variano con la sua concentrazione
- 5. Le sostanze chimiche hanno proprietà fisiche caratteristiche e ben definite
- 6. Una sostanza fonde e solidifica (bolle e condensa) alla stessa temperatura
- 7. Il calore latente mantiene stazionaria la temperatura dei passaggi di fase

LABORATORIO La cromatografia su carta

LABORATORIO Fusione e solidificazione del tiosolfato di sodio

FACCIAMO IL PUNTO

ESERCIZI

Sei pronto per la verifica?

LE LEGGI DEI GAS

- 1. Volume, pressione e temperatura caratterizzano lo stato di un gas
- 2. Boyle studiò l'elasticità dell'aria e scoprì la legge isoterma
- 3. Charles enunciò la legge isobara
- 4. Gay-Lussac enunciò la legge isocora
- 5. Le leggi dei gas si combinano in un'unica equazione
- 6. Che cosa sono i gas ideali?
- 7. La pressione di una miscela di gas è la somma delle loro pressioni parziali
- 8. Le particelle di gas diversi si muovono a velocità diverse

LABORATORIO La diffusione dei gas

FACCIAMO IL PUNTO

ESERCIZI

Sei pronto per la verifica?

DALLE SOSTANZE

- 1. I chimici hanno sempre cercato di capire come si formano le sostanze e di produrle artificialmente
- 2. Le sostanze possono essere semplici o composte
- 3. Ogni elemento è rappresentato da un simbolo ed è classificato nella tavola periodica
- **4.** Le trasformazioni della materia possono essere fisiche e chimiche
- 5. Nelle reazioni chimiche la materia si conserva
- **6.** Gli elementi che formano un composto sono sempre uniti nelle stesse proporzioni
- 7. Due elementi possono combinarsi in rapporti diversi per formare sostanze diverse
- 8. La teoria atomica di Dalton spiega le leggi ponderali
- 9. La differenza tra composti e miscele si spiega a livello microscopico
- 10. Sostanze formate da atomi e molecole diversi hanno proprietà differenti

FACCIAMO IL PUNTO

III VIII 99892 Sommario ch1-16.indd 4

ESERCIZI

73 **IN DIGITALE** 75

VIDEO: COME SI FA? Filtrare un miscuglio

78 solido-liquido

79 Ottenere l'acqua distillata 82

VIDEO

89

98

99

101

104

La distillazione di una 84 soluzione 85

Temperatura e passaggi 88 di stato

ANIMAZIONE

Modello molecolare dei 90 passaggi di stato 91

ZTE 20 esercizi interattivi

IN DIGITALE

VIDEO

La misura del volume di 106 un gas

108 Le leggi dei gas. Come varia il volume di un gas 110

ANIMAZIONI 111

Le leggi dei gas

112 APPROFONDIMENTO

114 Che tempo farà? I gas e la 114 meteorologia

115 122

123

124

ZIE 20 esercizi interattivi

La tavola periodica interattiva 125

VIDEO

128 La preparazione di un 130 composto: la legge di Proust

132 134

RIPASSA CON LO SMARTPHONE

ZIE 20 esercizi interattivi

135 138

140 141

142

23/02/17 17:49

IV

MOLECOLE, FORMULE ED EQUAZIONI CHIMICHE

1. La teoria atomica di Dalton non spiega la legge di Gay-Lussac					
2. Le molecole sono formate da atomi uguali o diversi					
3. Le sostanze sono costituite da atomi, molecole e ioni					
4. Le formule chimiche sono le «etichette» delle sostanze					
5. Le reazioni chimiche si riassumono con uno schema					
6. Bilanciando lo schema si ottiene un'equazione chimica					
CHIMICA VERDE COP21 e trasporto <i>green</i> : quanto CO ₂ stiamo risparmiando?					
FACCIAMO IL PUNTO					
ESERCIZI					
Sei pronto per la verifica?					

APPROFONDIMENTI Storia della chimica:

149

151

153

155

157

159

161

161 162

168

Amedeo Avogadro Storia della chimica: Stanislao Cannizzaro

ZIE 20 esercizi interattivi

LA MOLE E LA COMPOSIZIONE PERCENTUALE DEI COMPOSTI

1.	La massa atomica assoluta si esprime in kilogrammi					
PΕ	PER SAPERNE DI PIÙ Lo spettrometro di massa					
2.	La massa atomica relativa è un numero puro					
3.	La massa molecolare relativa si può calcolare					
4.	. Atomi e molecole si contano a «pacchetti» 1					
5.	 Una mole contiene un dato numero (N_A) di entità elementari 					
6.	Una mole di sostanze diverse ha massa diversa					
7.	La massa molare si esprime in g/mol 175					
8.	I calcoli con la mole e la costante di Avogadro 176					
9.	Dalle moli alla composizione percentuale di un composto 180					
10.	Dalla composizione percentuale di un composto alla sua formula					
11.	Una mole di gas diversi, a parità di temperatura e pressione,					
	occupa lo stesso volume					
12.	. Gas diversi hanno densità diverse 18					
13.	Dal volume molare alla costante universale <i>R</i> dei gas ideali					
LA	ORATORIO Determinazione della massa di sostanze espressa in moli	189				
FΑ	FACCIAMO IL PUNTO 190					
ES	ESERCIZI 19 ⁻					
Sei _l	ei pronto per la verifica?					

ZIE 20 esercizi interattivi

DAGLI ATOMI AI LEGAMI

1.	. Tra gli atomi agiscono forze di natura elettrica				
2.	. Gli atomi contengono cariche elettriche positive e negative				
3.	Crookes scopre che i raggi catodici sono particelle con carica elettrica negativa				
4.	Thomson e Millikan determinano carica e massa dell'elettrone	204			
5.	I raggi canale sono particelle con carica elettrica positiva	204			
6.	Il protone è la più piccola carica elettrica positiva	205			
	Thomson propone il primo modello di atomo strutturato	206			
8.	Rutherford bombarda gli atomi di oro con particelle alfa	206			
9.	Gli atomi hanno un nucleo positivo	207			
10.	Il numero di protoni distingue gli atomi di elementi diversi	208			
11.	Nel nucleo atomico ci sono anche i neutroni	209			
12.	Gli atomi di uno stesso elemento non sono tutti uguali	211			

La tavola periodica interattiva

ANIMAZIONE La legge di Coulomb

20 esercizi interattivi

V

13.	3. Gli elettroni sono disposti a strati intorno al nucleo atomico				
14.	4. Gli atomi più stabili hanno lo strato di valenza completo				
15.	5. Gli atomi si uniscono per trasferimento o condivisione di elettroni				
16.	6. Il legame ionico unisce atomi con strati di valenza molto diversi				
17.	Il legame covalente può essere semplice o multiplo, puro o polare	217			
FACCIAMO IL PUNTO					
ES	ESERCIZI 2				
Sei pronto per la verifica?					
INI	INIZIARE A NOMINARE I COMPOSTI CHIMICI				

LA CONFIGURAZIONE ELETTRONICA DEGLI ATOMI

1.	l limiti del modello planetario di Rutherford e il modello atomico di Bohr	233	IN DIGITALE		
PE	R SAPERNE DI PIÙ La doppia natura della luce	234	IN DIGITALE		
2.	Il modello atomico di Bohr per l'atomo di idrogeno	236	La tavola periodica		
3.	Per il principio di indeterminazione l'orbita dell'elettrone non si può definire	237	interattiva 🚾 🚾 🚾		
4.	Gli orbitali atomici esprimono la probabilità di trovare l'elettrone in una regione		APPROFONDIMENTO		
	dello spazio intorno al nucleo	238	Storia della chimica: Neils Bohr		
5.	I numeri quantici definiscono la dimensione e l'energia, la forma e l'orientamento	•	INCIIS DOITI		
	degli orbitali atomici	238	RIPASSA		
6.	La forma degli orbitali atomici è definita dal numero quantico secondario	240	RIPASSA CON LO SMARTPHONE		
7.	Il numero quantico di spin definisce il moto di rotazione dell'elettrone	242	20 esercizi interattivi		
8.	Il principio di esclusione di Pauli definisce il numero di elettroni in un orbitale	243			
9.	L'energia degli orbitali aumenta con i valori di <i>n</i> e di <i>l</i>	244			
10.	L'ordine di riempimento degli orbitali è definito da tre principi	246			
11.	La configurazione elettronica è la disposizione degli elettroni negli orbitali di un atomo	247			
LA	BORATORIO Saggi di colorazione alla fiamma	250			
FΑ	FACCIAMO IL PUNTO 250				
ES	ERCIZI	251			

11

LA TAVOLA PERIODICA DEGLI ELEMENTI

1.	Nella tavola di Mendeleev le proprietà degli elementi variano con la massa atomica				
2.	. Nel sistema periodico le proprietà degli elementi variano con il numero atomico				
PE	R SAPERNE D	PIÙ Eccezioni alla legge periodica			
3.	Il sistema pe	riodico è costituito da sette periodi e diciotto gruppi			
PE	R SAPERNE D	I PIÙ La chimica dello smartphone			
4.	La configura:	zione elettronica esterna nello stato fondamentale			
	è definita dal numero del gruppo				
5.	Le proprietà periodiche degli elementi sono distinte in fisiche e chimiche				
6.	Il raggio atomico diminuisce lungo un periodo e aumenta lungo un gruppo				
7.	L'energia di ionizzazione aumenta in un periodo e diminuisce in un gruppo				
8.	L'affinità elettronica è bassa negli alcalini e alta negli alogeni				
9.	L'elettronegatività aumenta in un periodo e diminuisce in un gruppo				
10.	Gli elementi si classificano in metalli, non metalli e semimetalli				
11.	1. Il carattere metallico diminuisce in un periodo e aumenta in un gruppo				
LA	BORATORIO	Proprietà chimiche dei metalli alcalini e alcalino-terrosi			
LA	BORATORIO	Proprietà fisiche dei metalli e dei non metalli			
FACCIAMO IL PUNTO					
ES	ESERCIZI				
Sei	Sei pronto per la verifica?				

La tavola periodica interattiva

255

257257

258

260

261

263

264

265

269

271

272

275

276276

277278284

APPROFONDIMENTI

Storia della chimica: Dmitrij Ivanovič Mendeleev Storia della chimica: Stanislao Cannizzaro Gli elementi della vita

ANIMAZIONI

La tavola periodica Energia di ionizzazione e livelli energetici

211 20 esercizi interattivi

VI

 I legami chimici sono forze attrattive tra atomi o tra molecole La configurazione elettronica dell'ottetto è stabile I legami chimici sono distinti in ionico, covalente e metallico II legame ionico si forma tra atomi di metalli e atomi di non metalli II legame covalente si forma tra atomi di non metalli uguali o diversi II legame covalente omopolare o puro si forma tra atomi dello stesso non metallo II legame covalente eteropolare o polare si forma tra atomi diversi di non metalli Nel legame covalente dativo gli elettroni di legame sono forniti da un solo atomo PER SAPERNE DI PIÙ La lunghezza e la forza del legame covalente Il tipo di legame dipende dalla differenza di elettronegatività tra due atomi Il legame metallico si forma tra atomi dello stesso metallo I legame a idrogeno Il legame a idrogeno Le proprietà dell'acqua FACCIAMO IL PUNTO ESERCIZI 	285 286 287 288 291 292 295 298 301 302 304 303 307 310 312 313	IN DIGITALE La tavola periodica interattiva APPROFONDIMENTO La conducibilità in un acquario ANIMAZIONI Il legame chimico e il legame metallico Il legame covalente RIPASSA CON LO SMARTPHONE ZIII 20 esercizi interattivi
---	--	---

13 LA GEOMETRIA DELLE MOLECOLE

1.	1. L'ibridazione prevede la combinazione di orbitali atomici 31					
2.	2. Esistono diversi tipi di ibridazione degli orbitali 318					
3.	3. L'atomo di carbonio si può ibridare sp , sp^2 , sp^3					
4. Le formule di struttura indicano come sono disposti gli atomi 322						
5. La risonanza: più formule di Lewis per una stessa molecola 325						
6. La teoria VSEPR definisce la geometria delle molecole 326						
7.	7. La polarità delle molecole dipende da ΔE_n e dalla geometria 329					
LA	LABORATORIO Polarità delle molecole 331					
FA	FACCIAMO IL PUNTO 331					
ES	ESERCIZI 332					
Sei	Sei pronto per la verifica? 336					

IE 20 esercizi interattivi

9. L'abbassamento della tensione di vapore

10. L'innalzamento del punto di ebollizione

	La tendenza al massimo disordine spinge i soluti a disciogliersi nei solventi				
2.	Un soluto si scioglie in un solvente se è simile al solvente				
3.	La solubilità di solidi e liquidi in acqua dipende dalla temperatura e dalla natura				
	del soluto				
LA	BORATORIO Miscibilità dei liquidi				
4.	La solubilità di un gas in acqua dipende anche dalla pressione				
5.	L'acqua dissocia i solidi ionici e dissolve i solidi molecolari polari				
5.	La concentrazione delle soluzioni indica la quantità di soluto				
7.	Come diluire le soluzioni concentrate				
В.	Le proprietà colligative dipendono dal numero di particelle di soluto				

337 338	K	IN DIGITALE	
	APPROFONDIMENTI		

Storia della chimica: Jacobus Henricus 343 van't Hoff Il tasso alcolemico 344 VIDEO IN LABORATORIO 347 Dissoluzione del solfato 348 rameico anidro 353 Dissoluzione e

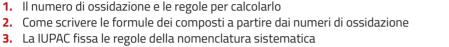
concentrazione di una 354 soluzione 356 La preparazione di una

358 soluzione

VII

11. L'abbassamento del punto di congelamento

12. La pressione osmotica


FACCIAMO IL PUNTO

ESERCIZI

Sei pronto per la verifica?

LA NOMENCLATURA

- 4. La nomenclatura dei composti binari
- 5. I composti binari dell'ossigeno sono gli ossidi, i perossidi e i superossidi
- 6. I composti binari dell'idrogeno sono gli idruri
- 7. I sali binari sono formati da un metallo e da un non metallo
- 8. Gli idrossidi sono composti ternari formati da un catione e dallo ione idrossido
- 9. Gli ossoacidi sono formati da idrogeno, non metallo e ossigeno
- **10.** Gli ossoanioni si formano dagli ossoacidi che rilasciano H⁺
- 11. I sali degli ossoacidi sono costituiti da cationi metallici e ossoanioni
- 12. I composti del cromo e del manganese

PER SAPERNE DI PIÙ La nomenclatura in un'etichetta

FACCIAMO IL PUNTO

ESERCIZI

(()

La tavola periodica interattiva

VIDEOLEZIONE Preparare, usare e diluire

una soluzione con una

RIPASSA

SAI? CON LO SMARTPHONE **ZIE** 20 esercizi interattivi

data concentrazione

APPROFONDIMENTO Dal nomenclator alla

ILIPAC 387 VIDEOLEZIONE

389 Assegnare i numeri di 390 ossidazione

393 RIPASSA CON LO SMARTPHONE 395 397

20 esercizi interattivi 398

LE REAZIONI CHIMICHE

- 1. Le reazioni si rappresentano attraverso le equazioni chimiche
- 2. Il bilanciamento delle reazioni osserva la legge di conservazione della massa
- 3. Esistono diversi tipi di reazioni chimiche
- 4. L'equazione ionica netta evidenzia gli ioni che partecipano alla reazione
- 5. La stechiometria descrive gli aspetti quantitativi delle reazioni
- 6. Stabilire le quantità di reagenti e prodotti in una reazione
- 7. Il reagente limitante determina la quantità dei prodotti di una reazione
- 8. La resa di una reazione è la quantità di prodotto che si forma

CHIMICA VERDE Green chemistry: la chimica sostenibile

LABORATORIO Reazioni chimiche

FACCIAMO IL PUNTO ESERCIZI

Sei pronto per la verifica?

405 406

399

400

360

360

364

365

372

373

376

376

379

382

386

IN DIGITALE

VIDEO: COME SI FA? 408 Manipolare i reagenti

415 chimici 417

VIDEO IN LABORATORIO 418 Combustione di un nastro di magnesio / Reazione 419

del potassio in acqua / 421 Raccolta dell'idrogeno 423 gassoso / Precipitazione dello ioduro di piombo

425 / Precipitazione del 425 bromuro di piombo

426 ANIMAZIONE 432

Il bilanciamento di una reazione chimica

VIDEOLEZIONE

Bilanciare le equazioni chimiche (non redox) Determinare il reagente limitante e la resa di una reazione

ZTE 20 esercizi interattivi

CHEMISTRY HIGHLIGHTS Periodic Properties

I pittogrammi di pericolo

Indice analitico

Mat10 Mat16

Mat1

VIII