SECONDA PROVA DI MATEMATICA 19 giugno 2025

Svolgimento

Quesito 1

Ipotesi

1.
$$BM \cong MC$$

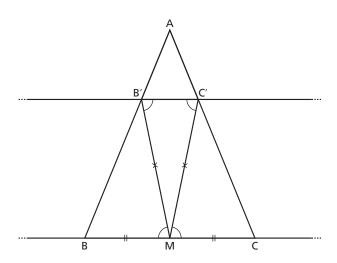
2.
$$AB' = \frac{1}{3}AB$$

3.
$$AC' = \frac{1}{3}AC$$

4.
$$MB' \cong MC'$$

Tesi

•
$$AB \cong AC$$



Dimostrazione.

Dalle ipotesi 2 e 3 segue che AB':B'B = AC':C'C.

Quindi, per l'inverso di un corollario del teorema di Talete, abbiamo B'C'//BC.

Consideriamo gli angoli evidenziati nella figura sopra.

- Dall'ipotesi 4 segue che il triangolo MB'C' è isoscele sulla base B'C'. Quindi, per il teorema del triangolo isoscele, $M\hat{B}'C' \cong M\hat{C}'B'$.
- Consideriamo le rette parallele B'C' e BC, tagliate dalla trasversale MB': abbiamo $B\hat{M}B'\cong M\hat{B}'C'$ perché angoli alterni interni.
- Analogamente, consideriamo ancora le rette parallele B'C' e BC, tagliate dalla trasversale MC': abbiamo $C\hat{M}C' \cong M\hat{C}'B'$ perché angoli alterni interni.

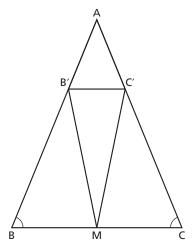
1 © Zanichelli 2025

Pertanto si ha $B\hat{M}B'\cong M\hat{B}'C'\cong M\hat{C}'B'\cong C\hat{M}C'$. Quindi, per la proprietà transitiva della congruenza, anche $B\hat{M}B'\cong C\hat{M}C'$.

Consideriamo i triangoli *BMB'* e *CMC'*. Essi hanno:

- $BM \cong MC$ per l'ipotesi 1;
- $MB' \cong MC'$ per l'ipotesi 4;
- $B\hat{M}B' \cong C\hat{M}C'$ per dimostrazione precedente.

Quindi i triangoli BMB' e CMC' sono congruenti per il primo criterio di congruenza dei triangoli. In particolare, $\hat{B} \cong \hat{C}$.



Infine, per l'inverso del teorema del triangolo isoscele, il triangolo ABC è isoscele sulla base BC, cioè $AB \cong AC$.

2 © Zanichelli 2025