
LABORATORIO DI INFORMATICA

Il moto oscillatorio del pendolo

Problema

Un pendolo di lunghezza 1 m è spostato di 5 cm dalla posizione di equilibrio; lasciato libero oscilla con attrito trascurabile.

 Rappresentare graficamente lo spostamento in funzione del tempo.

Studio del moto con un calcolo approssimato

Il periodo del pendolo è:

$$T = 2\pi \sqrt{\frac{l}{g}} = 6,28 \times \sqrt{\frac{1 \text{ m}}{9,8 \text{ m/s}^2}} = 2,0 \text{ s}$$

La forza P_t responsabile del moto non è costante ma varia con lo spostamento s:

$$P_t = \frac{-m \cdot g \cdot s}{l}$$

perciò non possiamo applicare le leggi del moto uniformemente accelerato.

Suddividiamo il periodo in tanti intervalli di tempo Δt tutti uguali e facciamo l'ipotesi che la forza sia costante in ogni intervallo. Se ogni intervallo è sufficientemente piccolo, l'ipotesi che la forza sia costante è accettabile.

Dividiamo il periodo per 200 e otteniamo un intervallo $\Delta t = \frac{2.0 \text{ s}}{200} = 0.01 \text{ s}.$

Se la forza è costante in 0,01 s, anche l'accelerazione è costante nello stesso intervallo:

$$a = \frac{-g \cdot s}{l} = -9.8 \text{ m/s}^2 \times \left(\frac{0.05 \text{ m}}{1 \text{ m}}\right) = -0.49 \text{ m/s}^2$$

Possiamo calcolare la velocità alla fine del primo intervallo, cioè all'istante $t_1 = 0.01$ s, sommando alla velocità iniziale v_0 l'incremento di velocità, cioè il prodotto $a_0 \cdot \Delta t$:

$$v_1 = v_0 + a_0 \cdot \Delta t$$

Per il calcolo dello spostamento utilizziamo la formula:

$$s_1 = s_0 + v_1 \cdot \Delta t$$

All'inizio del secondo intervallo, cioè all'istante $t_2 = t_1 + \Delta t$, accelerazione, velocità e spostamento sono:

$$a_1 = \frac{-g \cdot s_1}{l}$$
$$v_2 = v_1 + a_1 \cdot \Delta t$$

$$s_2 = s_1 + \nu_2 \cdot \Delta t$$

$$s_2 = s_1 + v_2 \cdot \Delta t$$

Incrementiamo di nuovo il tempo, ponendo $t_3 = t_2 + \Delta t$, calcoliamo l'accelerazione nel terzo intervallo, poi ripetiamo il calcolo di velocità e spostamento.

In pratica utilizziamo un calcolo ricorrente: calcoliamo i valori della velocità e dello spostamento incrementando i valori che avevano nell'intervallo precedente.

Otteniamo una tabella di questo tipo:

t (s)	a (m/s²)	v (m/s)	s (m)
0	-0,49	0	0,05
0,01			

Preparazione del foglio elettronico

- Organizza il foglio come appare nella schermata [→ figura 1].
- Nella riga 4 sistema i valori iniziali delle grandezze: in A4 metti il valore zero; in B4 poni l'accelerazione iniziale, cioè -0,49; in C4 la velocità iniziale 0 e in D4 lo spostamento iniziale 0,05.
- Nella cella A5 incrementa il tempo con la formula: =A4+0,01.
- Nella cella B5 calcola l'accelerazione con la formula: =-9.8*D4/1.
- Nella cella C5 calcola la velocità con la formula: =C4+B4*0,01.
- Nella cella D5 calcola lo spostamento con la formula: =D4+C5*0,01.

Ora, per completare la tabella bisogna copiare le formule della riga 5 nella zona sottostante, almeno finché il tempo assume il valore di un periodo, cioè 2 s.

Rappresentazione grafica

Evidenzia il tempo (colonna A) e lo spostamento (colonna D) e costruisci il grafico, riportando sull'asse orizzontale il tempo e su quello verticale lo spostamento [→ figura 2].

Se vuoi osservare il moto per più di un periodo, allunga la tabella copiando le formule in una zona più grande, poi rifai il grafico.

Il foglio di lavoro può essere impostato in modo diverso, utilizzando i riferimenti assoluti. Reimposta il foglio posizionando fuori della tabella la lunghezza l e spostamento iniziale s_0 .

	А	В	С	D
1	Il moto oscillatorio del pendolo			
2				
3	t(s)	a (m/s^2)	v (m/s)	s (m)
4	0	-0,49	0	0,05
5	0,01	-0,49	-0,0049	0,049951
6	0,02	-0,4895198	-0,0097952	0,04985305
7	0,03	-0,4885599	-0,0146808	0,04970624
8	0,04	-0,4871212	-0,019552	0,04951072
9	0,05	-0,4852051	-0,0244041	0,04926668
10	0,06	-0,4828135	-0,0292322	0,04897436
11	0,07	-0,4799487	-0,0340317	0,04863404
12	0,08	-0,4766136	-0,0387978	0,04824606
13	0,09	-0,4728114	-0,0435259	0,0478108
14	0,1	-0,4685459	-0,0482114	0,04732869
15	0,11	-0,4638212	-0,0528496	0,04680019
16	0,12	-0,4586419	-0,057436	0,04622583
17	0,13	-0,4530132	-0,0619662	0,04560617
18	0,14	-0,4469405	-0,0664356	0,04494182
19	0,15	-0,4404298	-0,0708399	0,04423342
20	0,16	-0,4334875	-0,0751747	0,04348167

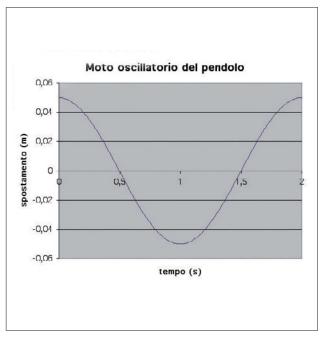


Figura 1 Figura 2