SUMMING-UP

 Animal coverings Body coverings play an important role in protection and help to maintain homeostasis, which is the ability of living things to maintain constant and controlled conditions in their internal environment. In invertebrates, the coating consists 	 of a simple epithelium, or a hard exoskeleton. In vertebrates, the skin is made of two layers of covering: the outer epidermis and the inner dermis. Below the dermis there is a layer of fat, which is therefore called <i>subcutaneous fat</i>. 	• The skin of vertebrates is characterised by different structures, skin appendages , which can have different forms and functions. Some examples of skin appendages are reptile scales, bird feathers and mammal fur.
 2 Control of body temperature All animals must maintain their body temperature within a certain range and they do so by following two principal strategies. Ectothermic animals, also known as 	 "cold blooded", can only exchange heat with the external environment. Endothermic animals, or "warm blooded", in addition to exchanging heat with the environment, are also able to produce heat through their own metabolism. 	• There are many adaptations in animals to both retain heat and to dispose of it. In addition, to aid thermoregulation, some animals adopt particular behaviour or adjustments to metabolism.
 3 The control of water loss and salt concentrations Animals that have to live in an environment that has a salt concentration equal to, or similar to, that of their internal environment would otherwise lose or gain water by osmosis. In some marine organisms, called isosmotic organisms, this occurs as the internal liquids in their bodies 	 have the same salt concentration as seawater. The greater proportion of animals are instead forced to expend energy to counteract the loss or acquisition of water by osmosis. These are osmoregulatory organisms, among which three cases are distinguishable: freshwater animals which oppose the continuous entry of water by 	 osmosis, producing hypotonic urine with very low ion content; seawater animals counteract water loss by drinking large amounts of water and eliminating the solutes through the urine and gills; terrestrial animals tend to lose water through transpiration, and must constantly take water in through food or drinking.
 4 Animals eliminate waste substances Animals must eliminate certain harmful substances resulting from the metabolism of proteins and nucleic acids. This process is called excretion 	 and occurs in three main ways. Aquatic animals, like fish and invertebrates, eliminate ammonia by expelling it from the gills or from the surface of the body. Mammals, amphibians and sharks 	 convert ammonia into urea, a less toxic substance that can be stored and expelled through the urine. Birds and reptiles produce uric acid, a solid and insoluble compound, which is excreted in the faeces.
 5 The human excretory system filters the blood, cleaning it of residues from the metabolism of proteins and harmful substances, or those that are no longer needed. The excretory organs are the kidneys, which are formed by a large number of functional units called nephrons. 	• Nephrons are composed of small tubes in which some sections are known to serve different functions: <i>Bowman's capsule</i> and the <i>glomerulus</i> of capillaries filter the blood, obtaining a filtrate containing a large percentage of water, ions, sugars and other useful substances; the <i>proximal</i> <i>convoluted tubule</i> is the section of the nephron that leads towards the innermost part of the kidney, in	 which some of the filtered solutes are reabsorbed; the <i>loop of Henle</i> is the section that folds and turns back towards the outer region of the kidney, where most of the filtered water is reabsorbed. The end product of renal filtration is urine, an aqueous solution containing urea and other solutes. It is excreted out through the collecting duct, ureters and urinary tract.

SUMMING-UP

6 Maintenance of homeostasis in plants

• In plants, the loss of water by evapotranspiration can become excessive. Plants living in arid environments, called **xerophytes**, and plants that live on saline soils, called **halophytes**, have a set of adaptations to maintain homeostasis.

- Some adaptations are related to the shape of the leaves and roots, while others relate to the reproductive cycle.
- Succulent plants instead possess a particular mechanism of stomatal opening and closing, called the

Crassulacean acid metabolism (CAM) (also known as CAM photosynthesis).

• Some species that live on saline soils are able to eliminate the excess salt through the so-called *salt glands*.