SUMMING-UP

 How animals move Locomotion is necessary for animals to find food, water, to escape predators and to reproduce. Single-celled organisms are limited to floating in the liquid in which they 	 live or moving through the use of pseudopodia, cilia and flagella. Animals that live in water are able to swim. Animals that live on land move on the ground by crawling or walking, 	 due to the presence of limbs. Insects, birds and bats (mammals), are the only animals able to fly. Flight is made possible by particular adaptations of the skeletal and muscular systems.
 2 Animal skeletons A skeleton provides a support structure to an animal, protects delicate organs, allows movement and is the store of important inorganic ions. In the animal kingdom there are three types of skeleton. 	 Some invertebrates possess a hydrostatic skeleton, formed by fluid-filled cavities. Arthropods and molluscs possess an exoskeleton, which is a hard external skeleton; in arthropods it consists of a polysaccharide, chitin, whilst in molluscs (for which it is called a 	 shell) it is made of calcium carbonate. All vertebrates, however, possess an endoskeleton, which is an internal bone skeleton. The echinoderms also have an endoskeleton made of a hard inner shell.
 3 The human skeleton: the skull and spine The vertebrate skeleton consists of an axial skeleton, which supports the body, and includes the skull and spine, and an appendicular skeleton, 	consisting of the limbs and the girdles that support them.The axial skeleton includes the skull, consisting of the bones of the skull and those of the face, and the spinal column, consisting of the vertebrae.	• Across all vertebrates, the human skeleton is the only one which exhibits the peculiarity of the erect position.
 4 The human skeleton: the limbs and joints The appendicular skeleton consists of the shoulder girdle, shoulder bones, the pelvic girdle, formed by the bones of the pelvis, and the limbs. 	• The upper limb includes the humerus, radius, ulna and the bones of the hand (carpal, metacarpal and phalanges); the lower limb is formed by the femur, tibia, fibula, and the bones of the foot (tarsus, metatarsals and phalanges).	• Three types of joints make movement of the skeleton possible, they are mobile, semi-mobile and immobile.
 5 How are the bones made The bones are made of living tissue. The functional unit of the connective bone tissue is the osteon, formed by cells called osteoblasts, which make the extracellular matrix solid. Osteoblasts, remaining trapped in 	 the matrix, are transformed into mature bone cells called osteocytes. At the centre of each osteon is a channel (called the <i>Haversian canal</i>) containing nerve fibres and blood vessels. Bones are formed by the ossification 	of embryonic skeletal cartilage that acts as a "template".Bone tissue retains its ability to reform itself throughout the lifetime of an individual and allows the repair of fractures.
 6 Muscles Skeletal muscle, in collaboration with the skeleton, allow one to maintain the posture of the body and realise movement. In addition, muscles produce the major part of the body's heat. Muscles are attached to the skeleton 	 by tendons and carry out movement through a system that requires the presence of two antagonistic muscles. Muscles enable movement due to the ability of muscle tissue to contract, i.e. to shorten. Muscle tissue consists of fibres in which the sarcomere is 	 the functional unit. On the microscopic level, the contraction is determined by the action of two proteins, actin and myosin, which are able to form temporary bridges.
 7 Support and anchoring to the ground in plants The root is the organ that anchors the plant to the soil and two basic types of root are recognised in plants: fibrous roots and taproots. 	• The shaft leads upwards to the leaves. In the trunk of trees that live in temperate climates, concentric rings can be seen that are the result of the annual production of spring wood and late wood with different	 characteristics. The rigidity of the plant is provided by the cell wall that surrounds the plant cell. It consists of several layers made of two different polysaccharides: cellulose and lignin.

Saraceni, Strumia Osservare e capire la vita - edizione azzurra © Zanichelli 2012