■ Capitolo 10 I legami chimici

Hai capito?

■ Mg deve perdere 2 elettroni per assumere la configurazione di Ne e ogni atomo di cloro può acquistare solo 1 elettrone.

■
$$\overrightarrow{Ba} \cdot + \overrightarrow{O} \rightarrow Ba^{2+} + \overrightarrow{O}^{2-}$$
; BaO

pag. 205 ■ I granelli saranno attratti da entrambe le bacchette.

■ BaO; KCl

pag. 206 ■ Bassa, perché devono mettere a disposizione gli elettroni di valenza.

■ 3 e⁻; 3+

pag. 207 solidi; variabili; lucenti; opachi; visibile; Conducono; elettroni; malleabili; duttili; simbolo

pag. 209 ■ Perché non hanno una composizione costante.

Sostituzionale, perché sono vicini nella tavola periodica e quindi le dimensioni degli atomi sono simi-

■ 15 carati.

pag. 211 A
$$\blacksquare : \ddot{F} \cdot + : \ddot{F} : \rightarrow : \ddot{F} - \ddot{F} :$$

$$H - \stackrel{\mid}{C} = \stackrel{\mid}{C} - H;$$

 $H - C \equiv C - H$

■
$$H:C::N:H-C\equiv N$$

pag. 214 ■ Aumenta dal basso verso l'alto e da sinistra a destra.

■ Non polari: F₂, N₂. Più elettronegativi: Br, O, Cl, Br, S.

$$\delta$$
- δ + Γ - Γ

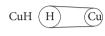
pag. 215 a) Covalente puro; b) ionico; c) metallico; d) covalente polare.

Quesiti e problemi

- Il legame tra atomi si forma se si abbassa la loro energia potenziale.
- L'energia di legame è la quantità di energia che è necessario fornire a una mole di sostanza per rompere il lega-
- 243 kJ/mol
- 4 Un atomo è particolarmente stabile quando ha 8 elettroni nello strato di valenza.
- 5
- 6 В
- 7 Tre

- 8 Deve acquistare un elettrone.
- **9** $1s^22s^22p^6$; 2°; 8 e⁻ di valenza.
- 10 Perché hanno già lo strato di valenza completamente riempito.
- **11** a) Cede 2 e⁻; b) acquista 2 e⁻; c) non acquista, né cede; d) acquista 1 e⁻. a) e b) Ar 1s²2s²2p⁶3s²3p⁶; c) He 1s²; d) Ne 1s²2s²2p⁶
- **12** Mg, magnesio. Metallo. Cede 2 e⁻ per raggiungere l'ottetto.
- **13** Ne; Ne; Ne; Kr; Ar; Ne; Xe
- **14** Rappresenta il numero di elettroni che un atomo guadagna, perde o mette in comune quando si lega ad altri
- **15** 2 elettroni; 1 elettrone; 1 atomo di ossigeno si combina con 2 atomi di potassio.
- **16** 🖸
- **17** Un atomo Al, che diventa ione Al³⁺, si lega con tre atomi F, che diventano ioni F⁻.

18 a)
$$\operatorname{Mg} \overset{\text{ i.i.}}{\overset{\text{ i.i.}}}}}{\overset{\text{ i.i.}}{\overset{\text{ i.i.}}}{\overset{\text{ i.i.}}{\overset{\text{ i.i.}}{\overset{ i.i.}}}}{\overset{\overset{ i.i.}}{\overset{ i.i.}}}{\overset{\overset{ i.i.}}{\overset{ i.i.}}}}{\overset{\overset{ i.i.}}}{\overset{\overset{ i.i.}$$


b)
$$K^{\bullet} + : Cl^{\bullet} \rightarrow [K]^{+} [:Cl^{\bullet}]^{-}$$

c)
$$\dot{\text{Mg}} \cdot + : \ddot{\ddot{\text{O}}} \cdot \rightarrow [\text{Mg}]^{2+} [\ddot{\ddot{\text{O}}} :]^{2-}$$

d) Na
$$\cdot$$
 + $:$ Br $\cdot \to [Na]^+$ [$:$ Br $:$]

- **19** A₂C; AD; BC; BD₂
- 20 Sono solidi.
- 21 Bisogna vincere la forza di attrazione elettrostatica.
- **22** forte; ioni; maggiore; forza; a) maggiore; b) minore; c) minore.
- **23** Gli ioni Mg²⁺ hanno raggio minore degli ioni Ca²⁺; gli ioni Mg²⁺ e O²⁻ sono quindi più vicini tra loro e la forza del legame è maggiore.
- **24** KCl; K⁺ ha raggio minore di Rb⁺, e a minore raggio corrisponde una forza di attrazione maggiore.
- **25** La deformazione porta a contatto ioni di uguale carica che si respingono. Interviene la forza di attrazione elettrostatica.
- **26** Ogni ione Cs⁺, dato il raggio maggiore, è circondato da 8 ioni Cl⁻. Gli ioni Cl⁻ per ogni ione Na⁺ sono invece 6.
- **27** A
- **28** Ca perde $2 e^- \rightarrow 2+$
- **29** D
- **30** a) V; b) V; c) F; d) F; e) F
- **31** Au, giallo; Cu, rosso.
- **32** A
- **33** B
- **34** D
- **35** È un metallo troppo tenero.
- **36** a) F; b) V; c) F; d) V
- 37 Il carbonio; ostacola lo slittamento dei piani del reticolo; lega interstiziale.
- **38** B
- **39** C
- 40 1; 2 H: F: :Ö: F: HF, OF₂
 :F: H₂O₂ :Ö-Ö:
 H H H
 - CO_2 : O = C = O: O_2 : O = N = N:
- **42** Acido ipobromoso (HBrO) HO—Br;; acido bromoso (HBrO₂) HO—Br →O acido bromico (HBrO₃) HO—Br →O

- **43** No, danneggia i tessuti. Gli atomi O si uniscono a completare l'ottetto.
- **44** a) F; b) S; c) O; d) C
- 45 A
- **46** A
- **47** a) Covalente polare; b) covalente polare; c) ionico; d) ionico; e) covalente polare.
- **48** a) Covalente polare; b) ionico; c) covalente polare; d) covalente puro.
- **49** A
- **50** $K_2O > BaO > Na_2O > SrO > MgO > Al_2O_3 > Cu_2O > Ag_2O$
- **51** $B_2O_3 > As_2O_3 > P_2O_5 > CO_2 > SO_2 > I_2O_5 > N_2O_3 > Cl_2O_3$
- **52** $NH_3 > PH_3 > AsH_3$
- 53 Nelle formule, gli elementi sono in ordine di elettronegatività crescente. Elettronegatività:

- **54** 4. 2. SiO₂
- 55 No, l'intero cristallo può essere considerato un'unica grande molecola.
- 56 Conducibilità elettrica.
- **57** Occorre molta energia per spezzare i legami covalenti tra gli atomi del cristallo.
- **59** Perché il legame covalente consente di soddisfare contemporaneamente la loro richiesta di acquistare elettroni per completare l'ottetto.
- **60** Na e F; NaF. Legame ionico; solido.
- **61** I, II e alcuni del III gruppo; IV, V, VI, VII e alcuni del III gruppo.
- 62 Elementi del VII, VI, V e alcuni del IV gruppo.

Il laboratorio delle competenze

- 1 Noble gases have 8 electrons in their valence shell, so they don't need to combine themselves with other elements to reach the stability (8 electrons in the valence shell).
- **2** Electrostatic.
- 3 a) L'attrazione fra elettroni di valenza e cationi; b) la condivisione di una o più coppie di elettroni.
- **4** Covalent bond (polar or not polar); dative covalent bond.
- **5** Na• \searrow • $\overset{\bullet}{\text{O}}$ • \swarrow Na [Na] $^{+}_{2}$ [$\overset{\bullet}{\text{O}}$ •] $^{2-}$ Composto ionico; legame ionico ($\Delta_{e} = 3,44 0.93 = 2,51$)
- **6** a) Covalente puro. $\Delta_e = 0.35$, CH₄; b) covalente puro. $\Delta_e = 0.38$, H₂S; c) ionico. $\Delta_e = 2.55$, BaO;
 - d) covalente puro. $\Delta_e = 0$, Br₂.
- 7 a) : $\ddot{\text{Cl}}$: $\ddot{\text{Ba}}$ $\ddot{\text{Cl}}$: $\ddot{\text{Ba}}$ $^{2+}$ $[\text{Cl}]_{2}^{-}$
 - b) H—H
 - c) :Cl Cl:
 - d) :Ö=C-Ö-H :O: |

8 Ba²⁺
$$\rightarrow$$
 [Ba]²⁺

$$\begin{bmatrix} CO_3^{2-} \\ \vdots \ddot{\bigcirc} - C - \ddot{\bigcirc} \vdots \\ \vdots \\ O_{\cdot} \end{bmatrix}^{2-}$$

- **9** La regola dell'ottetto non è rispettata e il livello più esterno non è completo.
- **10** Ione idronio.

$$\begin{array}{ccc} H - \overset{\circ}{\bigcirc} - H \\ & \downarrow \\ H \\ \\ \mathbf{11} & | \bar{\mathbf{C}} | \\ & | \underline{\mathbf{C}} | - \underline{\mathbf{B}} \longleftarrow | \underline{\mathbf{O}} - \underline{\mathbf{C}} \\ \end{array}$$

Ι<u>Ċ</u>ΙΙ

12 Il composto ionico rende l'acqua conduttrice di elettricità.